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In the Projector Quantum Monte Carlo method, one uses a function of the
hamiltonian to sample a distribution proportional to the exact ground state
wavefunction, and thereby compute exact matrix elements of it. In this lecture
we introduce the Diffusion Monte Carlo (DMC) method that involves drifting,
branching random walks.

In DMC, a many-body projector G(R,R′) = Ĝ, is repeatedly applied to
filter out the exact many-body ground state from an initial state. Let us denote
the initial wavefunction by Ψ(0)(R). A sequence of many-body wavefunctions is
defined by:

Ψ(n+1)(R) =

∫
dR′G(R,R′)Ψ(n)(R′). (1)

The projector is defined in terms of the many-body hamiltonian, Ĥ from which
a zero of energy, the so-called trial energy ET , has been subtracted; ET is used
to control the normalization.

Ĝ = e−∆τ(Ĥ−ET ) (2)

As can be shown by expanding the effect of the projector on a basis of exact
eigenfunctions, only the lowest energy state having a non-zero overlap with the
initial trial function survives after many iterations.

lim
n→∞

Ψ(n)(R) = e−n∆τ(E0−ET )Φ0(R)〈0|Ψ(0)〉 (3)

Here ∆τ is the (imaginary) “time step” and n is the number of iterations. Dif-
ferentiating with respect to τ = n∆τ , we find the imaginary time Schroedinger
Equation:

−dΨ(R; τ)

dτ
= (Ĥ−ET )Ψ(R; τ) = −1

2

N∑
i=1

∇2
iΨ(R; τ)+(V (R)−ET )Ψ(R; τ). (4)

To simulate this with Monte Carlo, an initial ensemble of P (0) configurations
is constructed with a Metropolis sampling procedure for the initial state Ψ(0)

(assuming it is real and non-negative). Configurations in the next “generation”
are constructed by random diffusion of all the electrons with a mean squared
step size of ∆τ . After all 3N electron coordinates have been moved, we make
on the average m = exp[−∆τ(V (R)− ET )] copies of R′.
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This simple implementation of the projection method becomes very ineffi-
cient as the number of electrons increases because the branching fluctuations are
not controlled. An importance sampling transformation makes the algorithm
much more efficient. After multiplying by a trial function ΨT (R), the density
f(R; τ) = ΨT (R)Ψ(R; τ) satisfies the evolution equation:

−∂f(R; τ)

∂τ
= −1

2

∑
i

∇i(∇if(R; τ)−f(R; τ)fFi(R))+[EL(R)−ET ]f(R; τ) (5)

where EL(R) = Ψ−1
T ĤΨT (R) is the local-energy of the trial function and

Fi(R) = 2∇i ln ΨT (R) is its “quantum force”.
For any state for a system with more than two electrons, one encounters

the sign problem, limiting the direct application of these algorithms for most
fermion systems. One can demonstrate that the signal-to-noise ratio for the
simplest generalization of the DMC algorithm will decrease as exp(−τ(EF −
EB)) where τ is the projection time and EF − EB is the many-body energy
difference between fermion and boson states. There is a simple way to avoid the
fermion sign problem: forbid moves that change the sign of the trial function.
This is the fixed-node (FN) approximation for a real trial function: one can
achieve efficiency similar to variational Monte Carlo while achieving the best
upper bound to the energy consistent with the constraints.

We will also discuss implementation of pseudopotentials within DMC and
illustrate with recent calculations.
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