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Outline
e Geometrically frustrated magnets

Experimental signatures of frustration

e Classical models
Degeneracy of under-constrained ground states

Ground state selection: order from disorder

e Low temperature correlations
Mean field theory & large- n theory

Emergent fields & fractionalised excitations
In 2D — for triangular lattice Ising antiferromagnet

In 3D — for spin ice



Correlations induced by ground state
constraints

Local constraints Long range correlations

Ztet Sz’ =0 Sharp structure in
<S—q ' Sq>




Theoretical description of low-T state

Mean field theory?

Recall mean field approach:

Replace full Hamiltonian A by single-spin approximation
ZATr(eP. ) =(..) = Z7 " Tr(ePMo ) = (... )0

Variational free energy

F < <H>0 — TSy = Zz’j Jz-jmimj + ckgT’ Zz m,? + ...

=m' - (J+ckgTI) - m+...



Theoretical description of low-T state

Mean field theory?

Recall mean field approach:

Variational free energy
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Pick {m;} to minimise estimate for I

HighT: m; =0 Low T: m; # 0

Spectrum of J fixes mean field /. and ordering pattern



Theoretical description of low-T state

Mean field theory?

Recall mean field approach:

Variational free energy

F<(Hyoy—TSoy=m' - (J+ckgTT) -m+...
Pick {m;} to minimise estimate for I

HighT: m; =0 Low T: m; # 0
Spectrum of J fixes mean field I, and ordering pattern
Geometric frustration

—=> flat lowest band in J = ordering undetermined



Theoretical description of low-T state

Self-consistent Gaussian approximation (large- 1 limit)

Soften constraint on spin lengths:

Tr... = [dS6(S]—1)...~ [, [dS e 25" .
— with A chosensothat {|S|?) =

Then

< 1fd{S} L(BI+AD)S



Theoretical description of low-T state

Self-consistent Gaussian approximation (large-  n limit)
—1 f d{S:}.. —1ST(BI+AL)S

— with A chosen so that (\S@\2> =

So that
<SZS]> — [(ﬁz]] + )\H)_l} ij
with \ fixed by
1= N"1r(BJ + AI)~!



Theoretical description of low-T state

Self-consistent Gaussian approximation (large-  n limit)
~1 f d{S:}.. —1ST(BI+AL)S

— with A chosen so that (\S@\2> =

So that ) EK)
<SZS]> — [(ﬁ»]] + )\H)_l} ij
with \ fixed by
1= N"1r(BJ + AI)~!

>~

Low T: correlator is projector [P onto flat band ~ (5;S;) o< P

1]



Ground states of TLIAFM

Triangular lattice Ising antiferromagnet is disordered at T'=0

Six \/§ X \/§ ordered states




Ground states of TLIAFM

Triangular lattice Ising antiferromagnet is disordered at T'=0

Six v/3 X v/3 ordered states with defects at no energy cost




Ground states of TLIAFM

Triangular lattice Ising antiferromagnet is disordered at 1I'=0

Six v/3 X /3 ordered states and domain walls at no energy cost

. .. but with entropy cost



TLIAFM & height model

Bl6te and Hilhorst (1982)
Height differences

e.g. clockwise around up triangle

_ Heights at triangle centres
Ah = —2 parallel spins

Ah = +1 opposite spins h(r) = integer mod 6

h+2 h(r) is flat in the six /3 X /3 states

—has steps of 41 at domain walls

h+1 h

Ground state fluctuations: entropic weight

Plh(r)] ~ e ? with H = % [ d*r|Vh(r)[?



TLIAFM & height model

Spins in terms of heights

oy ~ cos|mh(r)/3 + ¢l

Spin correlations

+1 same sublattice

—1/2 different sublattices

(020w) ~ |t — 2|2 {

Discreteness of heights = pinning potential
H = H — g [ d°r cos2mh(r)

— irrelevant under RG



Excitations in TLIAFM & height model

triangles with three spins parallel = height field vortices

One spin flip creates
vortex-antivortex pair

Height differences

clockwise around up triangle

Ah = —2 parallel spins
Ah = +1 opposite spins

Height changes by =6

around down/up triangle

with all spins parallel




Excitations in TLIAFM & height model

triangles with three spins parallel = height field vortices
One spin flip creates Further spin flips separate
vortex-antivortex pair vortex-antivortex pair

i



Interaction between vortex-antivortex pairs

Plh(r)] ~e ™ with H=2% [d*|Vh(r)|?

Log interaction potential

For isolated vortex at origin .
between vortices

_ 6
Vh(r)] = 52 V(R) o K log R
In system of size L — but also entropy gain
[ @2 |Vh(r)[?  log(L) 2log It

from separation

Unbound for small K = Correlation length & ~ exp(45J)



Correlations and excitations in 3D

Local constraints Long range correlations

Ztet Si =0 Sharp structure in
<S—q ' Sq>




Gauge theory of ground state correlations
Youngblood et al (1980), Huse et al (2003), Henley (2004)

Map spin configurations . .. ...to vector fields  B(r)

‘two-in two out’ groundstates ... ...map to divergenceless B(r)



Detalls of mapping

Construct vector fields B! from

each spin component S* :

Sl A~ ol

S, 8 =0—-V-B =0

Ground state constraint

>l 1l
becomes flux conservation law: B =V Xx A

— —

Coarse-grained distribution: P(A) o exp(—%5 [[V x AJ?)



Ground states as flux loops

Entropic distribution: ~ P[B(r)] o exp(—% [ B*(r)d’r)

Power-law correlations: <B¢(I‘)Bj(0)> —




Translating between fluxes and spins
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Si(K + q) = ¢’ 5(q) 1 -1 -1 1

Small-q structure in é(q) appears near Bragg points K with K # 0



Low T correlations from neutron diffraction

Fennell, Bramwell and collaborators (2009)
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Monopoles in spin ice

Monopole excitations

Excited states

Ground state

Castelnovo, Moessner and Sondhi (2008)




Interactions between monopoles

Interactions from two origins:

e Influence of monopoles on entropy of spin ice ground states

PB(r)] o exp(—% [ B*(r)d’r)
—implies SV (R) x R}

e Effects of further neighbour (dipolar) spin interactions

— lifts ground state degeneracy of nearest-neighbour model



Effect of dipolar interactions on equilibrium
behaviour in spin ice
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Melko and Gingras (2004).



Coulomb potential between monopoles
from dipolar spin interactions

View spins as extended dipoles W \\

replaced
by

non-zero net charges



Probing interactions between monopoles

Use [111] magnetic field to control monopole density
— observe monopole ‘liquid-gas’ transition

1.2 [
Experiment (ref. 6)
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Summary

Geometric frustration
leads to macroscopic classical ground state degeneracy

possibility of order-by-disorder ... but long-range order avoided

At low T: strong correlations + large fluctuations
emergent degrees of freedom within ground-state manifold
stable power-law correlations
fractionalised excitations

Coulomb interactions from dipolar coupling



