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Outline

• Geometrically frustrated magnets

Experimental signatures of frustration

• Classical models

Degeneracy of under-constrained ground states

Ground state selection: order from disorder

• Low temperature correlations

Mean field theory & large- n theory

Emergent fields & fractionalised excitations

In 2D — for triangular lattice Ising antiferromagnet

In 3D — for spin ice



Correlations induced by ground state
constraints

Local constraints

∑

tet Si = 0

Long range correlations

Sharp structure in
〈S−q · Sq〉



Theoretical description of low-T state

Mean field theory?

Recall mean field approach:

Replace full Hamiltonian H by single-spin approximation H0

Z−1Tr
(

e−βH . . .
)

≡ 〈. . . 〉 ⇒ Z−1
0 Tr

(

e−βH0 . . .
)

≡ 〈. . . 〉0

Variational free energy

F ≤ 〈H〉0 − TS0 =
∑

ij Jijmimj + ckBT
∑

im
2
i + . . .

≡ mT · (J+ ckBT I) ·m+ . . .
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Pick {mi} to minimise estimate for F

High T: mi = 0 Low T: mi 6= 0
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Theoretical description of low-T state

Mean field theory?

Recall mean field approach:

Variational free energy

F ≤ 〈H〉0 − TS0 = mT · (J+ ckBT I) ·m+ . . .

Pick {mi} to minimise estimate for F

High T: mi = 0 Low T: mi 6= 0

Spectrum of J fixes mean field Tc and ordering pattern

Geometric frustration

⇒ flat lowest band in J⇒ ordering undetermined



Theoretical description of low-T state

Self-consistent Gaussian approximation (large- n limit)

Soften constraint on spin lengths:

Tr . . . ≡
∏

i

∫

d ~Si δ(|~Si| − 1) . . . ≈
∏

i

∫

d ~Si e
−λ

2
|~Si|2 . . .

— with λ chosen so that 〈|~Si|2〉 = 1

Then

〈. . .〉 = Z−1
∫

d {Si} . . . e−
1
2S

T(βJ+λI)S
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Theoretical description of low-T state

Self-consistent Gaussian approximation (large- n limit)

〈. . .〉 = Z−1
∫

d {Si} . . . e−
1
2S

T(βJ+λI)S

— with λ chosen so that 〈|~Si|2〉 = 1

So that

〈SiSj〉 =
[

(βJ+ λI)−1
]

ij

with λ fixed by

1 = N−1tr(βJ+ λI)−1

E(k)

k

Low T: correlator is projector P onto flat band 〈SiSj〉 ∝ Pij
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Ground states of TLIAFM

Triangular lattice Ising antiferromagnet is disordered at T = 0

Six
√
3×

√
3 ordered states and domain walls at no energy cost

. . . but with entropy cost



TLIAFM & height model
Bl öte and Hilhorst (1982)

Height differences
e.g. clockwise around up triangle

∆h = −2 parallel spins

∆h = +1 opposite spins

h+1

h+2

h

Heights at triangle centres

h(r) = integer mod 6

h(r) is flat in the six
√
3×

√
3 states

– has steps of ±1 at domain walls

Ground state fluctuations: entropic weight

P [h(r)] ∼ e−H with H = K
2

∫

d2r |∇h(r)|2



TLIAFM & height model

Spins in terms of heights

σr ∼ cos[πh(r)/3 + ϕr]

Spin correlations

〈σrσr′〉 ∼ |r− r′|−1/2 ×
{

+1 same sublattice

−1/2 different sublattices

Discreteness of heights ⇒ pinning potential

H ⇒ H− g
∫

d2r cos 2πh(r)

— irrelevant under RG



Excitations in TLIAFM & height model

triangles with three spins parallel ≡ height field vortices

One spin flip creates
vortex-antivortex pair

+
+

Height differences
clockwise around up triangle

∆h = −2 parallel spins

∆h = +1 opposite spins

Height changes by ±6

around down/up triangle

with all spins parallel



Excitations in TLIAFM & height model

triangles with three spins parallel ≡ height field vortices

One spin flip creates
vortex-antivortex pair

+
+

Further spin flips separate
vortex-antivortex pair

+
+

+
+



Interaction between vortex-antivortex pairs

P [h(r)] ∼ e−H with H = K
2

∫

d2r |∇h(r)|2

For isolated vortex at origin

|∇h(r)| = 6
2πr

In system of size L
∫

d2r |∇h(r)|2 ∝ log(L)

Log interaction potential

between vortices

V (R) ∝ K logR

— but also entropy gain

2 logR

from separation

Unbound for small K ⇒ Correlation length ξ ∼ exp(4βJ)



Correlations and excitations in 3D

Local constraints

∑

tet Si = 0

Long range correlations

Sharp structure in
〈S−q · Sq〉



Gauge theory of ground state correlations
Youngblood et al (1980), Huse et al (2003), Henley (2004)

Map spin configurations . . .

‘two-in two out’ groundstates . . .

. . . to vector fields B(r)

. . . map to divergenceless B(r)



Details of mapping

e`2

e`3

e`1

e`4

x
y

z

Ground state constraint

becomes flux conservation law:

Construct vector fields ~Bl from

each spin component Sl :

~Bl
i = êiS

l
i

∑

tet S
l
i = 0→∇ · ~Bl = 0

~Bl = ∇× ~Al

Coarse-grained distribution: P ( ~A) ∝ exp(−κ
2

∫

[∇× ~A]2)



Ground states as flux loops

Entropic distribution: P [B(r)] ∝ exp(−κ
2

∫

B2(r)d3r)

Power-law correlations: 〈Bi(r)Bj(0)〉 = 3rirj−r2δij

4πκ r5



Translating between fluxes and spins

Sj(K+ q) = eiK·rjS(q)















M(q)

Bx(q)

By(q)

Bz(q)















= R ·















S1(q)

S2(q)

S3(q)

S4(q)















R =R−1 = 1
2















1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1















Small-q structure in ~B(q) appears near Bragg points K with K 6= 0



Low T correlations from neutron diffraction
Fennell, Bramwell and collaborators (2009)

Ho2Ti2O7



Monopoles in spin ice

Monopole excitations

Ground state

Castelnovo, Moessner and Sondhi (2008)

Excited states

−
+

− +



Interactions between monopoles

Interactions from two origins:

• Influence of monopoles on entropy of spin ice ground states

P [B(r)] ∝ exp(−κ
2

∫

B2(r)d3r)

— implies βV (R) ∝ R−1

• Effects of further neighbour (dipolar) spin interactions

— lifts ground state degeneracy of nearest-neighbour model



Effect of dipolar interactions on equilibrium
behaviour in spin ice

Melko and Gingras (2004).



Coulomb potential between monopoles
from dipolar spin interactions

View spins as extended dipoles

by

+

−

replaced

zero net charge

−
+

non-zero net charges



Probing interactions between monopoles

Use [111] magnetic field to control monopole density

— observe monopole ‘liquid-gas’ transition

Castelnovo, Moessner and Sondhi, Nature 451, 42 (2008).



Summary

Geometric frustration

leads to macroscopic classical ground state degeneracy

possibility of order-by-disorder . . . but long-range order avoided

At low T: strong correlations + large fluctuations

emergent degrees of freedom within ground-state manifold

stable power-law correlations

fractionalised excitations

Coulomb interactions from dipolar coupling


