Electronic structure calculations results from LDA+U method

Vladimir I. Anisimov

Institute of Metal Physics Ekaterinburg, Russia

LDA+U method applications

- Mott insulators
- Polarons and stripes in cuprates
- Charge order: Fe₃O₄
- Spin order: calculation of exchange interaction parameters in CaV_nO_{2n+1}
- Orbital order: KCuF₃, LaMnO₃
- Charge and orbital order: Pr_{0.5}Ca_{0.5}MnO₃
- Low-spin to high-spin transition: Co⁺³ in LaCoO₃
- Magnetic transition in FeSi_{1-x}Ge_x and vacancy magnetism in TiO_{2-x}

Mott insulators that are small gap semiconductors or even metals in LSDA are correctly reproduced in LDA+U as wide gap magnetic insulators with well localized d-electrons

Table 1. Experimental (exp) and calculated (LDA + U and LSDA) spin moment (m in μ_B) and energy gap (E in eV) values of the late-3d-transition-metal oxides.

	E_{LSDA}	E_{LDA+U}	E_{exp}	m_{LSDA}	m_{LDA+U}	m_{exp}
CaCuO ₂	0.0	2.10	1.5	0.0	0.66	0.51
CuO	0.0	1.9	1.4	0.0	0.74	0.65
NiO	0.2	3.1	4.3, 4.0	1.0	1.59	1.77, 1.64, 1.90
CoO	0.0	3.2	2.4	2.3	2.63	3.35, 3.8
FeO	0.0	3.2	2.4	3.4	3.62	3.32
MnO	0.8	3.5	3.6-3.8	4.61	1.67	4.79, 4.58

V.Anisimov et al, Phys.Rev. B 44, 943 (1991)

LDA+U method applications

The density of states for ferromagnetic Gd metal from LDA+*U* calculation and results of BIS (bremsstrahlung isochromat spectroscopy) and XPS (x-ray photoemission spectroscopy) experiments.

Antiferromagnetic Mott insulator CaCuO₂ (in LDA nonmagnetic metal)

Polaron formation in cuprates and nickelates

A hole localization by local disruption of magnetic ordering (spin bag) and by lattice distortion in Mott insulators

TABLE I. The dependence of the total energy (δE , in meV) and the magnetic moments (μ , in μ_B) on the displacement (u) of either in-plane ("breathing," BR) or apical oxygens ("Jahn-Teller", JT) towards the central transition-metal ion (TM₁) in the supercell (TM₂ is the nearest and TM₃ the next-nearest TM₁ neighbor) in the case of "doped" La₂CuO₄ (LCO) and La₂NiO₄ (LNO).

	и	δΕ	μ _{TM}	μ _{TM2}	μ _{TM3}
LCO	0%	0	-0.55	-0.59	0.72
	2% (BR)	-39	-0.43	-0.63	0.73
	11% (JT)	15	0.96	-0.64	0.73
LNO	0%	0	0.42	-1.58	1.67
	4% (BR)	-210	0.54	-1.58	1.67

V.Anisimov et al, Phys.Rev.Lett. 68, 345 (1992)

Zhang-Rice singlet in La₂Cu_{0.5}Li_{0.5}O₄

Non-magnetic S=0 Cu⁺³ ion in CuO₄ clusters isolated by Li ions from each other

V.Anisimov et al, Phys.Rev.B 55, 12829 (1997)

t-J model parameters for distorted La₂CuO₄

Low-temperature tetragonal crystal structure of La_2CuO_4 can be presented as distorted (tilting and rotation of CuO_6 octahedra) high-temperature structure

	Anisotropic		Isotropic	
	J_{μ}	t_{μ}	J_{μ}	t_{μ}
1,0)	0.105	0.425	0.109	0.486
0,1)	0.111	0.466	0.109	0.486
1,1)	0.016	-0.064	0.016	-0.086
2,0)	0	-0.001	0	-0.006
0,2)	0	0.046	0	-0.006
2,1)	0	0.014	0	0
1,2)	0	0.036	0	0

V.Anisimov et al, Phys.Rev.B 66, 100502 (2002)

Stripe phase in cuprates ($La_{7/8}Sr_{1/8}CuO_4$)

V.Anisimov et al, Phys. Rev. B 70, 172501 (2004)

Stripe phase in cuprates ($La_{7/8}Sr_{1/8}CuO_4$)

Angle resolved photoemission spectral weight integrated within 500 meV of the Fermi level, as a function of kx and ky together with calculated Fermi surface for 2D CuO₂ plane with stripes oriented along y (dashed line).

Wannier function for metallic stripe band

Charge order in Fe_3O_4

one Fe⁺³ ion in tetrahedral position (A)

two Fe^{+2.5} ions in octahedral positions (B)

Below T_V=122K a charge ordering happens ----- Verwey transition

Simultaneous metal-insulator transition:

Fe₃O₄ has spinel

crystal structure

half of the octahedral positions is occupied by Fe⁺³ and other half by Fe⁺².

V.Anisimov et al, Phys. Rev.B 54, 4387 (1996)

LDA and charge order problem

Charge disproportionation in LSDA is unstable due to self-interaction problem

$$\mathbf{U} = \frac{\mathrm{d}\varepsilon}{\mathrm{d}n}; \qquad \varepsilon_1^{\mathrm{LSDA}}(\mathbf{n}_0 - \delta \mathbf{n}) = \varepsilon_0 - \mathrm{U}\delta\mathbf{n}; \quad \varepsilon_2^{\mathrm{LSDA}}(\mathbf{n}_0 + \delta \mathbf{n}) = \varepsilon_0 + \mathrm{U}\delta\mathbf{n};$$

in LDA+U self-interaction is explicitly canceled

$$\epsilon_{1} = \epsilon_{1}^{\text{LSDA}}(n_{0} - \delta n) + U(\frac{1}{2} - (n_{0} - \delta n)) = \epsilon_{0} - U(\frac{1}{2} - n_{0})$$

$$\epsilon_{2} = \epsilon_{2}^{\text{LSDA}}(n_{0} + \delta n) + U(\frac{1}{2} - (n_{0} + \delta n)) = \epsilon_{0} - U(\frac{1}{2} - n_{0})$$

LSDA and LDA+U results for Fe_3O_4

 Fe_3O_4

Charge and orbital order in experimental lowtemperature monoclinic crystal structure Fe_3O_4

I.Leonov et al, PRL93,146404 (2004)

Charge and orbital order in experimental low-temperature monoclinic crystal structure Fe_3O_4

TABLE I. Total and *l*-projected charges, magnetic moments, and occupation of the most populated t_{2g} minority orbitals calculated for inequivalent Fe_B ions in the low-temperature P2/c phase of Fe₃O₄ [28].

Fe_B ion	q	q_s	q_p	q_d	$M\left(\mu_B\right)$	$t_{2g\downarrow}$ orbital	п
Fe_{B1}	6.04	0.17	0.19	5.69	3.50	$d_{xz} \mp d_{yz}$	0.76
Fe_{B2}	5.73	0.19	0.21	5.44	3.94		0.09
Fe_{B3}	5.91	0.19	0.21	5.51	3.81		0.09
Fe _{B4}	6.03	0.16	0.18	5.69	3.48	$d_{x^2 - y^2}$	0.80

Exchange interactions in layered vanadates

CaV_nO_{2n+1} (n=2,3,4) systems show a large variety of magnetic properties:

- n=3: CaV₃O₇ has unusual long-range spin order
- n=4: CaV₄O₉ is a frustrated (plaquets) system with a spin gap value 107K
- n=2: CaV₂O₅ is a set of weakly coupled dimers with a large spin gap 616 K
- isostructural MgV₂O₅ has very small spin gap value < 10K

Fully ab-initio description of magnetic properties

LDA+U calculations: eigenfunctions and eigenvalues

Exchange couplings calculations using LDA+U results Heisenberg model is solved by QMC

V.Anisimov et al, Phys.Rev.Lett. 83, 1387 (1999)

Crystal structure and orbitals

Crystal structure of CaV_nO_{2n+1}

is formed by VO₅ pyramids connected into layers.

V⁺⁴ ions in d¹ configuration.

The occupied d_{xy} -orbital of V⁺⁴ ions in CaV₃O₇

Exchange couplings scheme

The basic crystal structure and the notation of exchange couplings in

CaV₂O₅ and MgV₂O₅

 CaV_3O_7

CaV₄O₉

V atoms represented by large circles with different colors have different z-coordinate Oxygen atoms are shown by small circles

Long range magnetic structure of CaV_3O_7 is depicted by white arrows

	${\rm CaV_2O_5}$	$\rm MgV_{2}O_{5}$	${ m CaV_3O_7}$	$\mathrm{CaV_4O_9}$
J1	-28	60	46	62
J2	608	92	-14	89
J3	122	144	75	148
J4	20	19	18	91

QMC solution of Heisenberg model

Comparison of the calculated and measured susceptibility

KCuF₃ has cubic perovskite crystal structure

with Jahn-Teller distorted CuF₆ octahedra.

Orbital order in KCuF₃

In KCuF₃ Cu⁺² ion has *d*⁹ configuration

with a single hole in e_g doubly degenerate subshell.

antiferro-orbital order

LDA+U calculations for *undistorted* perovskite structure

hole density of the same symmetry

A.Lichtenstein et al, Phys. Rev.B 52, R5467 (1995); J.Medvedeva et al, PRB 65,172413 (2002)

Cooperative Jahn-Teller distortions in KCuF₃

Orbital order in $Pr_{1-x}Ca_{x}MnO_{3}$ (x=0 and 0.5)

PrMnO₃ has orthorhombic perovskite crystal structure

with tilted and rotated Jahn-Teller distorted MnO₆ octahedra.

Orbital order for partially filled e_g shell of Mn⁺³ ion in PrMnO₃ in a crystal structure *without* JT-distortion from LDA+U

 $Pr_{0.5}Ca_{0.5}MnO_3$

experimental magnetic and charge-orbital order

Orbital order for partially filled e_g shell of Mn⁺³ ion in Pr_{0.5}Mn_{0.5}O₃ in a crystal structure *without* JT-distortion from LDA+U

V.Anisimov et al, Phys.Rev.B 55, 15 494 (1997); M.Korotin, PRB62, 5696 (2000)

Stripe formation in Pr_{7/8}Sr_{1/8}MnO₃

M.Korotin et al, PRB62, 5696 (2000)

Spin state of Co^{+3} in $LaCoO_3$

Open circle denotes a hole in oxygen p-shell.

The total energies for various spin states of LaCoO₃

relative to the energy of $t_2^{6} e_g^{0}$ state versus R3c lattice constant.

HoCoO₃ versus LaCoO₃

The rhombohedral crystal structure of $LaCoO_3$ (left) and the orthorhombic crystal structure of $HoCoO_3$ (right). Co - large spheres; O - small spheres.

Comparison of total energy per Co ion of intermediate and low-spin state solutions for $LaCoO_3$ and $HoCoO_3$ calculated with the LDA+U approach as a functions of temperature. The temperature of transition is calculated as the temperature where two lines cross.

I. A. Nekrasov et al, PRB 68, 235113 (2003)

Magnetic transition in FeSi

Ground state of FeSi is a nonmagnetic semiconductor. With temperature increase material gradually becomes magnetic metal. LDA+U calculations show coexistence of two states.

Ground state of FeGe is a ferromagnetic metal. For alloy $FeSi_{1-x}Ge_x$ with increasing x transition to non-magnetic semiconductor is observed.

Density of states for FeSi (solid line) and for FeGe (dashed line)

V.I.Anisimov et al, PRL 89, 257203 (2002)

 $\begin{array}{c} 0.25 \\ 0.2 \\ 0.2 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.05 \\ 0.05 \\ -0.10 \\ 0.02 \\ 0.02 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ M(\mu_B) \end{array}$

Magnetic transition in $FeSi_{1-x}Ge_x$

Total energy as a function of the spin moment M. The solid, dashed, and dash-dotted lines correspond to FeGe, FeSi, and FeSi_{0:58}Ge_{0.42} Magnetism due to vacancy states in TiO_{2-x}

Oxygen ion removal generates appearance of half-filled vacancy state in the energy gap that results in magnetic state

V.I.Anisimov et al, J. Phys.: Condens. Matter 18 (2006) 1695

- Exchange couplings in molecular magnet Mn-12 ([Mn₁₂O₁₂(CH₃COO)₁₆(H₂O)₄]2CH₃COOH4H₂O) (PRB 65, 184435 (2002))
- Insulating ground state of quarter-filled ladder NaV_2O_5 (PRB 66, 081104 (2002))
- CrO₂ : a self-doped double exchange ferromagnet (PRL 80, 4305 (1998))
- Mott-Hubbard insulator on Si-terminated SiC(0001) surface (PRB 61, 1752 (2000))
- Antiferromagnetism in linear-chain Ni compound $[Ni(C_6H_{14}N_2)_2] [Ni(C_6H_{14}N_2)_2Cl_2]Cl_4 (PRB 52,6975 (1995))$

LDA+U and LDA+DMFT

LDA+U

Static mean-field approximation Energy-independent potential

$$\hat{V} = \sum_{mm'\sigma} |inlm\sigma > V_{mm'}^{\sigma} < inlm'\sigma|$$

LDA+DMFT Dynamic mean-field approximation Energy-dependent complex self-energy operator

$$\hat{\Sigma}(\varepsilon) = \sum_{mm'\sigma} |inlm\sigma > \Sigma(\varepsilon)_{mm'}^{\sigma} < inlm'\sigma|$$

Applications: Insulators with long-range spin-,orbital- and charge order Applications: Paramagnetic, paraorbital strongly correlated metals

Unsolved problem: short range spin and orbital order

Dynamical cluster approximation (DCA)