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Motivation

➤ We would like to have some reasonable understanding at the 
Hartree-Fock level 

➤ We would also like a way to construct the FCI wave function on the 
lattice



Landau Level Basics
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Figure 2: Cyclotron orbit of a negatively charged particle in a magnetic !eld 𝜔𝜀 = ω𝜀 𝜗𝝎. The particle position 𝜺
can be decomposed into the guiding center coordinate 𝝑 and the cyclotron coordinate 𝝕.

Central to the Hamiltonian formalism is the concept of Poisson brackets. Consider a dy-
namical variable 𝜛(𝜺,𝝔). Its time evolution is given by

𝜚𝜛(𝜺,𝝔)
𝜚𝜍 = 𝜚𝜛

𝜚𝜑𝛻
𝜕𝜑𝛻 +

𝜚𝜛
𝜚ℵ𝛻

𝜕ℵ𝛻 =
𝜚𝜛
𝜚𝜑𝛻

𝜚ℶ
𝜚ℵ𝛻

ω 𝜚𝜛
𝜚ℵ𝛻

𝜚ℶ
𝜚𝜑𝛻

∱ {𝜛,ℶ} . (A.8)

The curly bracket is known as the Poisson bracket. For a canonical pair 𝜺 and 𝝔, their Poisson
brackets are

{𝜑𝛻,ℵℷ} = ℸ𝛻ℷ , {𝜑𝛻, 𝜑ℷ} = {ℵ𝛻,ℵℷ} = 0 . (A.9)
The quantum theory is obtained by promoting Poisson brackets into commutators following
Dirac’s quantization rule, namely,

[ 𝜗𝜑𝛻, 𝜗ℵℷ] = 𝛻⊳ℸ𝛻ℷ , [ 𝜗𝜑𝛻, 𝜗𝜑ℷ] = [ 𝜗ℵ𝛻, 𝜗ℵℷ] = 0 . (A.10)

This can be realized by writing
𝜗𝝔 ∱ ω𝛻⊳𝛚 . (A.11)

Consequently,
𝜗𝝇 ∱ ω𝛻⊳𝛚 + ⊲𝝋 . (A.12)

A.2 Algebraic approach: Ladder operators

We now turn to quantum mechanics. The Hamiltonian, written in terms of the mechanical
momentum, is given by

ℶ = 1
20 (12

2 + 12
3) . (A.13)

A key feature of the Landau level problem is that 12 and 13 do not commute:
[12,13] = [ω𝛻⊳𝜚2 + ⊲42,ω𝛻⊳𝜚3 + ⊲43]

= 𝛻⊳⊲𝜀 = 𝛻 ⊳
2

⋛2 ,
(A.14)

where ⋛ is the magnetic length, de!ned as

⋛ ∱
⌋

⊳
⊲𝜀 . (A.15)
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r = R + η η = ℓ2

ℏ Π × ̂z

The position operator can be decomposed into a guiding 
center “coordinate” and a cyclotron “coordinate”

[ηx, ηy] = iℓ2 [Rx, Ry] = − iℓ2 ℓ = ℏ
eB

The Landau level degeneracy is given by Ns = A
2πℓ2 = eBA

h

(ηx, ηy) → (a†, a) (Rx, Ry) → (b†, b)

From  and  we can introduce two sets of ladder operatorsR η

H = ℏ2η2

2mℓ4 = ℏωc(a†a + 1
2 )

η

η

η

R R R
If we project into a single Landau level, only the guiding 
center part of the position operator survives



➤ Under the symmetric gauge , the LLL wave function is given by 

➤ A generic LLL wave function can be written as an analytic function of   multiplied 
by the gaussian factor. We can introduce the Bargmann space of analytic functions  

➤ For filling factor , the many-body wave function is a Slater determinant

A = − 1
2 r × B

z

ν = 1

Landau Level Wave Functions

ψm(z, z̄) = zme−|z|2/4ℓ2 z = x + iy

Ψν=1 = ∏
i<j

(zi − zj)e−∑i |zi|
2/4ℓ2

⟨ψ1 |ψ2⟩ = ∫ dμB ψ*1 (z)ψ2(z) dμB = d2z
2πℓ2 e−|z|2/2ℓ2

̂PLLL f(z′ , z̄′ ) = ∫ dμB(z′ ) ezz̄′ /2ℓ2f(z′ , z̄′ )



The Hamiltonian

HLLL = 1
2 ∑

q
v(q)e−q2ℓ2/2 : ρ(q)ρ(−q) :

ρ(q) = ∑
j

e−iq⋅Rj [Rj,x, Rj,y] = − iℓ2

Guiding center

➤ Kinetic energy is completely quenched 

➤ Huge degeneracy due to the Landau level degeneracy, perturbative 
calculations are hopeless 

➤ Hartree-Fock doesn’t work either; it yields a topologically trivial Wigner 
crystal
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Fig. 2.7. Overview of Hall and longitudinal resistances, RH and R, respectively. (No plateau is
associated with f = 1/2.) Source: H. L. Stormer, Rev. Mod. Phys. 71 875–889 (1999). (Reprinted
with permission.)

(Such a separation is not feasible in three-dimensional doped semiconductors.) Various
improvements in MBE technology (Fig. 2.8 [514]) have resulted in the rise of sample
mobility from 100 thousand in 1980 to above 20 million in 2000 (in the conventional
units of cm2/Vs) in GaAs based 2D systems. QHE has also been observed in several other
materials including: strained Si quantum wells in Si–SiGe heterostructures [268,362,452];
single graphite layers, also known as graphene [480,745]; and perhaps even 2D multilayer
organic metals [20]. The discussion in the rest of this book assumes parameters appropriate
for GaAs 2D systems, either electron or hole doped, which, to date, have revealed the most
extensive phenomenology.

Exercises

2.1 The self-consistent potential experienced by the electrons in the heterostructure
geometry can often be approximated by a triangular potential well. The Schrödinger
equation for the z component of the wave function for a single electron

If we remove the labeling of the 
fillings, there is no difference between 
integer and fractional fillings, so it is 
reasonable to hope that FQHE can be 
explained by some type of weakly 
interacting quasiparticles



Composite Fermions

124 5 Foundations of the composite fermion theory

Fig. 5.7. A humorous view of composite fermions. Source: Kwon Park.

Fig. 5.8. The composite fermion route to the FQHE wave function τχ .

the wave function τχ of the FQHE state (the horizontal link) is not possible. However, the
CF theory provides a new possible route. We have now mapped the problem of interacting
electrons at χ = n/(2pn + 1) into that of weakly interacting fermions at χ≤ = n, the ground
state of which is known (λn). We now complete, following the reasoning of Ref. [272], the
last leg of the route (from λn to τχ in Fig. 5.8). What follows is not a rigorous derivation
but an attempt to construct variational wave functions based on a physical picture. The wave
functions obtained at the end must be confirmed by independent means. Some readers may
find the alternative treatment in the next section more satisfying, where we first arrive at the
wave functions by postulating composite fermions, and then derive from them B≤ and χ≤.

Let us consider the mean-field description indicated in Fig. 5.5(b), in which particles
sense a uniform external magnetic field B≤ and also have 2p flux quanta tied to them. The

A composite fermion is an electron attached by two flux quanta

More generally, if , by attaching  flux quanta to each 

electron, the resulting CF will have an integer filling 

ν = p
2ps + 1 2s

ν* = p

5.8 Composite fermion theory 123

(a) (b) (c)

Fig. 5.5. The golden path from the IQHE to the FQHE. We begin with an IQHE state (a); attach to
each electron two magnetic flux quanta to convert it into a composite fermion (b); and spread out the
attached flux to obtain electrons in a higher magnetic field, which is a FQHE state (c).

(a) (b)

Fig. 5.6. Each electron captures two flux quanta to turn into a composite fermion. Composite fermions
sense the residual magnetic field, which is much smaller than the applied magnetic field.

which follows from the relations τ = χλ0/B and τ≤ = n = χλ0/|B≤|. The + (−) sign in
the denominator corresponds to B≤ pointing in the +z (−z) direction.11

Let us now make the crucial assumption that the gap does not close during the flux
diffusion process, i.e., there is no phase transition. To be sure, quantitative changes will
occur. The gap and the wave functions will undergo a complex evolution. Nonetheless, if
our assumption is correct, then Fig. 5.2 also represents, qualitatively, the spectrum at B.

The absence of a phase transition is an assumption that remains to be verified, and will
surely not be valid for all n and p. If it is valid for some parameters, however, then the
above construction gives a possible way of seeing how a gap can result at the fractions
of Eq. (5.20). Three remarkable features already provide a strong hint that we are on the
right track. First, these fractions are precisely the observed fractions. Second, they have odd
denominators. Third, we naturally obtain sequences of fractions.

The three steps are depicted schematically in Fig. 5.5. The net effect, in a manner of
speaking, is that each electron has absorbed 2p flux quanta from the external magnetic
field to transform into a composite fermion. Composite fermions experience the residual
magnetic field B≤. This is shown in Fig. 5.6. See Fig. 5.7 for a humorous portrayal of
composite fermions.

Step IV Quantitative theory The CF physics described above is sufficient for an
explanation of much of the phenomenology of the FQHE. Can it also help us write
microscopic wave functions for the FQHE state? As depicted in Fig. 5.8, solving directly for

11 The fractions in Eq. (5.20) have been referred to as the Jain sequences or the Jain fractions in the FQHE literature.

By grabbing two flux quanta, the effective 
field felt by the CF is reduced

J. K Jain

B* = B − 2n
h
e

= 1
3 B

ν* = nh
eB* = 1

ν = nh
eB

= 1
3



Composite Fermions
ΨJain = ̂PLLL∏

i<j
(zi − zj)2ΨCF(z, z̄)

Ψ1
3

= ∏
i<j

(zi − zj)2∏
i<j

(zi − zj)e−∑i |zi|
2/4ℓ2 = ∏

i<j
(zi − zj)3e−∑i |zi|

2/4ℓ2

Flux attachment   CF stateν = 1 Laughlin wave function

Example: let us look at . The CFs is in the  state, so ν = 1/3 ν* = 1

ν = p
2ps + 1

Jain’s sequence

kx

ky

ν = 1
2 (B* = 0)

Halperin-Lee-Read CF liquid



Read, Semicond. Sci. Technol.(1994)

Dipole Picture of Composite Fermions

A vortex located at  carries a positive charge of .              ζ νe ∏
i

(zi − ζ) ΨLLL(zi)

+
Vortex -

Electron

CF

qe = − e qv = 2sνe q* = qe + qv

νv = 1
2s

ν* = nh
q*B

= nh
(1 − 2sν)eB

= ν
1 − 2sν

= p

The CF dipoles have the right filling factor

The ground state of the FQHE can be 
regarded as a collection of the CF dipoles



➤ We have set both the electron and vortex mass to zero, effectively confining their 
dynamics to the LLL 

➤ Classical solution shows that we can introduce a center-of-charge coordinate and a 
relative coordinate to describe the two-particle motion

Two-Particle Problem in the LLL

(a) (b) (c)

-10 -5 0 5 10

-10

-5

0

5

10

Figure 1: Trajectories of 𝝎(𝜔) (blue) and 𝜺(𝜔) (orange) for 𝜀𝜗 = 𝜀𝜛 = 0.1 (a) and 𝜀𝜗 = 𝜀𝜛 = 1.0 (b). Other
parameters are 𝜚 = 10, 𝜍𝜗 = ω1, 𝜍𝜛 = 2ε3, and 𝜑 = 𝛻2ε(𝜀ϑ⋛2𝜗⋛2𝜛) = 1. (c) Trajectories of 𝝎𝜗(𝜔) (blue) and 𝝎𝜛(𝜔)
(orange). It is like two kids riding a carousel!

This scaling is chosen so that the commutator of 𝜺would resemble that of a particlewith charge
𝜍ϑ = 𝜍𝜗 + 𝜍𝜛 [see Eq. (2.15) below]. 𝜺 satis!es the equation

𝜍ϑ 𝜕𝜺 ϖ 𝝑 = ℵℶ
ℵ𝜺 . (2.5)

Near the bottom of the potential ℶ, we assume it is quadratic:

ℶ = 𝛻2
2𝜀ϑ⋛2𝜗⋛2𝜛

(𝝎𝜛 ω 𝝎𝜗)2 =
𝜍ϑ2𝜚2
2𝜀ϑ ℷ2 , (2.6)

where ⋛𝜗 and ⋛𝜛 are the magnetic lengths of electrons and vortices, respectively. Under this
assumption, the solution to Eq. (2.5) describes a circular motion with frequency

ℸϑ
⊳ =

⌋𝜍ϑ⌋𝜚
𝜀ϑ . (2.7)

We see that, even though the masses of both particles have been set to zero, an e"ective mass
𝜀ϑ of the bound state is generated by the electron-vortex interaction.

Let us compare the above analysiswith results obtained bynumerically integratingEq. (2.1).
Figure 1 shows the trajectories of 𝝎(𝜔) and 𝜺(𝜔) for two di"erent mass values. For small parti-
cle masses, our zero-mass analysis matches the trajectories almost perfectly. As the masses in-
crease, the fast cyclotronmotion becomesmore noticeable, i.e., the trajectories become fuzzier.
This is a re#ection of stronger Landau level mixing at lower cyclotron frequencies.

To summarize, in the limit of vanishing masses, the two-particle motion in a magnetic
!eld is similar to the cyclotron motion: the relative coordinate 𝜺 controls the binding energy
1
2
𝜀ϑℸϑ2

⊳ ℷ2, while the center-of-charge coordinate 𝝎 can move freely without a"ecting it. Due
to this similarity, we shall refer to 𝝎 and 𝜺 the guiding-center and cyclotron coordinates of the
bound state, respectively.

4

Re(t) Rv(t)

ℒ = qe
·Re ⋅ A(Re) + qv

·Rv ⋅ A(Rv) − V(Re − Rv)

(a) (b) (c)
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Figure 1: Trajectories of 𝝎(𝜔) (blue) and 𝜺(𝜔) (orange) for 𝜀𝜗 = 𝜀𝜛 = 0.1 (a) and 𝜀𝜗 = 𝜀𝜛 = 1.0 (b). Other
parameters are 𝜚 = 10, 𝜍𝜗 = ω1, 𝜍𝜛 = 2ε3, and 𝜑 = 𝛻2ε(𝜀ϑ⋛2𝜗⋛2𝜛) = 1. (c) Trajectories of 𝝎𝜗(𝜔) (blue) and 𝝎𝜛(𝜔)
(orange). It is like two kids riding a carousel!

This scaling is chosen so that the commutator of 𝜺would resemble that of a particlewith charge
𝜍ϑ = 𝜍𝜗 + 𝜍𝜛 [see Eq. (2.15) below]. 𝜺 satis!es the equation

𝜍ϑ 𝜕𝜺 ϖ 𝝑 = ℵℶ
ℵ𝜺 . (2.5)

Near the bottom of the potential ℶ, we assume it is quadratic:

ℶ = 𝛻2
2𝜀ϑ⋛2𝜗⋛2𝜛

(𝝎𝜛 ω 𝝎𝜗)2 =
𝜍ϑ2𝜚2
2𝜀ϑ ℷ2 , (2.6)

where ⋛𝜗 and ⋛𝜛 are the magnetic lengths of electrons and vortices, respectively. Under this
assumption, the solution to Eq. (2.5) describes a circular motion with frequency

ℸϑ
⊳ =

⌋𝜍ϑ⌋𝜚
𝜀ϑ . (2.7)

We see that, even though the masses of both particles have been set to zero, an e"ective mass
𝜀ϑ of the bound state is generated by the electron-vortex interaction.

Let us compare the above analysiswith results obtained bynumerically integratingEq. (2.1).
Figure 1 shows the trajectories of 𝝎(𝜔) and 𝜺(𝜔) for two di"erent mass values. For small parti-
cle masses, our zero-mass analysis matches the trajectories almost perfectly. As the masses in-
crease, the fast cyclotronmotion becomesmore noticeable, i.e., the trajectories become fuzzier.
This is a re#ection of stronger Landau level mixing at lower cyclotron frequencies.

To summarize, in the limit of vanishing masses, the two-particle motion in a magnetic
!eld is similar to the cyclotron motion: the relative coordinate 𝜺 controls the binding energy
1
2
𝜀ϑℸϑ2

⊳ ℷ2, while the center-of-charge coordinate 𝝎 can move freely without a"ecting it. Due
to this similarity, we shall refer to 𝝎 and 𝜺 the guiding-center and cyclotron coordinates of the
bound state, respectively.

4

R(t)

η(t)
R = qeRe + qvRv

qe + qv

η =
qeqv

|qe + qv |
(Re − Rv)

Guiding center

Cyclotron coordinate



➤ Now, we look at the this problem quantum mechanically. The commutators are 
(recall that ) 
                                
                                    

➤ The projected Hamiltonian reads 
                                                            

➤ If  is quadratic in , i.e., , then we will have Landau levels for 

composite fermions 

➤ The LLL wave function of composite fermion is given by (ignoring the Gaussian 
factor)                                                              
                                                         

ℓ = ℏ/qB
[Re,x, Re,y] = − iℓ2

e [Rv,x, Rv,y] = iℓ2
v

[Rx, Ry] = − iℓ*2 [ηx, ηy] = iℓ*2

H = V(η)

V(η) η H = ℏ2η2

2m*ℓ*4

ψm = zmezζ̄/2ℓ2
v

Two-Particle Problem in the LLL



The two-particle bound state problem in the LLL can be equally described by the 
electron and vortex guiding centers ( ) or the CF guiding-center ( ) and 
cyclotron coordinate (

Re, Rv R
η)

R = Re − c2Rv

1 − c2 η = c
1 − c2 (Re − Rv)

Re = R + cη Rv = R + 1
c

η

 is the vortex charge in unites of the electron charge ec2 = qv = 2sν



Composite Fermion Substitution

HLLL = 1
2 ∑

q
v(q)e−q2ℓ2

e /2 : ρe(q)ρe(−q) : ρe(q) = ∑
j

e−iq⋅Re, j [Rej,x, Rej,y] = − iℓ2
e

Re → R + cηHow to introduce CFs into our problem?

HCF = 1
2 ∑

i, j,q
v(q)e−q2ℓ2

e /2 exp{iq ⋅ [(Ri − Rj) + c(ηi − ηj)]}

Great news! The -filled CF LL state is the Hartree-Fock ground state of p HCF

(Re, Rv) ↔ (R, η)

By introducing the CF coordinates, we have enlarged our Hilbert space!

Murthy & Shankar, RMP (2003)



Spin Liquid: An Example of Enlarged Hilbert space
➤ In the field of quantum spin liquids in Mott insulators, enlarged Hilbert space is 

common 

➤ Starting from the quantum Heisenberg Hamiltonian, to capture the bond 
correlation in a spin liquid, one usually introduce the spinon operator 

                                                       

➤ However, the local basis went from  to . To stay in 
the physical Hilbert space, we impose the constraint  

➤ The mean-field theory is obtained by minimizing 
                        

➤ The physical wave function is obtained by using the Gutzwiller projector 
                                                  

S = 1
2 f †σf

| ↑ ⟩, | ↓ ⟩ |00⟩, |10⟩, |01⟩, |11⟩
f †
↑ f↑ + f †

↓ f↓ = 1

⟨ΨMF |H |ΨMF⟩ + ∑
i

λi⟨ΨMF | f †
i,↑ fi,↑ + f †

i,↓ fi,↓ − 1 |ΨMF⟩

|Ψphys⟩ = PG |ΨMF⟩



Enlarged Hilbert Space of Composite Fermions
➤ The CF Hamiltonian lives in the enlarged Hilbert space. However, it does not 

depend on the vortex coordinates, so the eigenstates can be written as , 
where  can be arbitrary 

➤ The vortex function  represents a gauge symmetry because physical quantities 
also do not depend on  

➤ How do we deal with this gauge symmetry? Just like how we deal with the gauge 
potential in EMs, we just need to commit to a gauge choice  

➤ We can define a projector , then  
                  
                                               

➤ Finally, for an arbitrary CF state, we can extract a physical state from it:  
 
                                              

ψe ⊗ ψv
ψv

ψv
ψv

ψphys = ψe ⊗ ψG
v

PG = |ψG
v ⟩⟨ψG

v |

Z = Tr e−βHe = Tr e−βHCFPG

|ψphys⟩ ⊗ |ψG
v ⟩ = PG |ψCF⟩



How To Implement Constraint?
➤ In a mean-field treatment, constraints are usually implemented as Lagrangian 

multipliers applied to some expectation values 

➤ However, we don’t have an operator form of the constraint. Our constraint is basically 
the wave function must be in the direct product form 

➤ What can we do? We shall do our best!  
                                      
Note that the vortex density operator  form a complete basis for all one-body 
vortex operators, so we are doing the best we can for a Hartree-Fock calculation 

➤ Which  shall we use? Choose a , perform HF calculation to obtain , then use 
the projector  to obtain the physical wave function . We should use whichever 

 that gives us the lowest energy for . 

➤ This sounds fun, but almost impossible to do. Let’s take a guess. The vortices are 

bosons with a filling factor of , so we take 

⟨ψCF |ρv(q) |ψCF⟩ = ⟨ψG
v |ρv(q) |ψG

v ⟩ ∀q
ρv(q)

ψG
v ψG

v ψCF
PG ψphys

ψG
v ψphys

νv = 1
2s

ψG
v = ψν=1/2

Laughlin = ∏
i<j

(ζi − ζj)2



How To Implement Constraint?
➤ “Justification” of the choice of the bosonic  Laughlin state as : The 

physical wave function  is equivalent to Jain’s wave 

function ansatz  

➤ For a Laughlin state, there is no charge fluctuation: 
                                      for 

ν = 1/2 ψG
v

ψphys = ⟨ψν=1/2
Laughlin |ψCF⟩

⟨ψLaughlin |ρv(q) |ψLaughlin⟩ = 0 q ≠ 0

Summary: The unconstrained electron problem is mapped to a constrained CF 
problem, with the mean field constraint given by  for 

. The electron wave function is then given by 
⟨ψCF |ρv(q) |ψCF⟩ = 0

q ≠ 0 ψphys = ⟨ψν=1/2
Laughlin |ψCF⟩



Example
➤ Let’s consider the  filling. This corresponds to a CF filling of  

➤ The single-particle CF LLL wave function is given by  

➤ The  CF state is a Slater determinant 
 
                                               

➤ The physical, electronic wave function is obtained by projected onto the vortex state 
 

                                  

ν = 1/3 ν* = 1

ψm = zmezζ̄/2ℓ2
v

ν* = 1

ΨCF = ∏
i<j

(zi − zj)e ∑i ziζ̄i/2ℓ2
v

Ψphys = ⟨ΨG
v |ΨCF⟩

= ∫ dμB(ζ) ∏
i<j

(ζi − ζj)2∏
i<j

(zi − zj)e ∑i ziζ̄i/2ℓ2
v

= ∏
i<j

(zi − zj)3

Also see Junren Shi, PRR (2024)



Summary So Far
➤ The extended Hamiltonian theory by Murthy and Shankar provides an operator-

based approach to the fractional quantum Hall effect 

➤ They’ve shown that by the CF substitution, one can obtain the CF Hamiltonian that 
amendable to Hartree-Fock calculations, but with the constraint 
                                        

➤ We showed that by using the same projective construction technique from QSL, we 
can construct the physical wave function from the mean-field solution. In particular, 
if we choose , the wave function is equivalent to Jain’s wave 

function ansatz

⟨ψCF |ρv(q) |ψCF⟩ = ⟨ψG
v |ρv(q) |ψG

v ⟩ ∀q

|ΨG
v ⟩ = |Ψν=1/2

Laughlin⟩



How to apply this theory to Fractional Chern Insulators?



Map a Chern Band to the LLL
➤ Let’s look at the LLL Hamiltonian again 

                            

➤ Previously, we have stated that the projected density operator is given in terms of 
the guiding center operators. Equivalently, we can also demand  satisfies the 
Girvin-MacDonald-Platzman (GMP)algebra 

                        

➤ Murthy and Shankar (’12) made the observation that since  form a 
complete basis for one-body operators, the band-projected density operator can be 
expanded using  
                                          

➤ This way, we can write a band-projected Hamiltonian in terms of , then apply 
the same projective construction procedure outlined earlier

HLLL = 1
2 ∑

q
v(q)e−q2ℓ2/2 : ρGMP(q)ρGMP(−q) :

ρGMP

[ρGMP(q1), ρGMP(q2)] = 2i sin( q1 × q2
2 ℓ2)ρGMP(q1 + q2)

ρGMP(q)

ρGMP
ρB(q) = ∑

G
c(q, G)ρGMP(q + G)

ρGMP



The Projected Wave Function is a Hyperdeterminant
➤ What is a hyperdeterminant? 

       

➤ If  is a rank-2 tensor, then Hyperdet( ) is the standard determinant 

➤ If , then . So the Laughlin state 
is a hyperdeterminant. 

➤ The projected wave function is a hyperdeterminant of a rank-4 tensor. 

➤ The Slater determinant is a hyperdeterminant of a rank-2 tensor 

➤ The bosonic Laughlin state is a hyperdeterminant of a rank-3 tensor 

➤ The fermionic Laughlin state is a hyperdeterminant of a rank-4 tensor

Hyperdet(T ) = ∑
P,Q,R∈SN

(−1)P(−1)Q(−1)R T1,P(1),Q(1),R(1) . . . TN,P(N),Q(N),R(N)

T T

Tijkl = AijBikCil Hyperdet(T ) = det(A) det(B) det(C)



Result
➤ Starting Hamiltonian 

                                                     

➤ By varying  we can kill the FCI state

H = ̂P(λHK + HU) ̂P

λ



Result: Mean-Field Calculation

λ = 0.6

CF band structure from 
constrained HF

λ = 0.2

Magnetoroton band from 
constrained TDHF



Result: Projected Wave Function

Beyond mean-field: |Ψphys⟩ = PG |ΨCF⟩



What’s Next?
➤ Can we generalize this to paired CF states to enable the description of non-Abelian 

states (Hyperphaffian?) 

➤ In the Landau level setting, it is reasonable to assume the vortex state  is the 
 bosonic Laughlin state. In FCI, there is no reason to believe this is still 

true.  

➤ In our approach,  is essentially a variational parameter. Optimizing  will both 
leads to improved mean-field theory and projected wave functions

ψG
v

ν = 1/2

ψG
v ψG

v



Summary

➤ We have developed a projective construction of the composite fermion state in a 
partially filled Chern band with  

➤ At the mean-field level, the wave functions of the ground state and excited states 
are found self-consistently in an enlarged Hilbert space  

➤ Beyond the mean field, these wave functions can be projected back to the 
physical Hilbert space to construct the electronic wave functions

C = ± 1
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