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Motivation

» We would like to have some reasonable understanding at the
Hartree-Fock level

» We would also like a way to construct the FCI wave function on the
lattice



Landau Level Basics

= =
VYV

The position operator can be decomposed into a guiding
0 center “coordinate” and a cyclotron “coordinate”
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From R and 1 we can introduce two sets of ladder operators
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center part of the position operator survives



Landau Level Wave Functions

» Under the symmetric gauge A = — Er X B, the LLL wave function is given by
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» A generic LLL wave function can be written as an analytic function of z multiplied

by the gaussian factor. We can introduce the Bargmann space of analytic functions
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» For filling factor v = 1, the many-body wave function is a Slater determinant
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The Hamiltonian
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Guiding center

» Kinetic energy is completely quenched

» Huge degeneracy due to the Landau level degeneracy, perturbative
calculations are hopeless

» Hartree-Fock doesn’t work either; it yields a topologically trivial Wigner
crystal



Hall Resistance, Ry (hle2)

Resistance, R
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Magnetic Field (T)

If we remove the labeling of the
fillings, there is no difference between
integer and fractional fillings, so it is
reasonable to hope that FQHE can be
explained by some type of weakly
interacting quasiparticles



Composite Fermions

M A composite fermion is an electron attached by two flux quanta
J. KJain
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By grabbing two flux quanta, the effective nh
field felt by the CF is reduced il
More generally, if v = P , by attaching 2s flux quanta to each
2ps + 1

electron, the resulting CF will have an integer filling v* = p



Composite Fermions
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Example: let us look at v = 1/3. The CFs is in the v* = 1 state, so

i<j i<j i<j
Flux attachment v = 1 CF state Laughlin wave function
Jain’s sequence Halperin-Lee-Read CF liquid
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Dipole Picture of Composite Fermions

A vortex located at { carries a positive charge of ve. H (7, =) Yr11(2)
i

The ground state of the FQHE can be
regarded as a collection of the CF dipoles

Electron

Read, Semicond. Sci. Technol.(1994)

The CF dipoles have the right filling factor
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Two-Particle Problem in the LLL

Y =qR,-AR)+qR, -AR)—V(R,—R)
> We have set both the electron and vortex mass to zero, effectively confining their

dynamics to the LLL

> Classical solution shows that we can introduce a center-of-charge coordinate and a
relative coordinate to describe the two-particle motion
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Two-Particle Problem in the LLL

» Now, we look at the this problem quantum mechanically. The commutators are

(recall that £ = v/ 7/qB)
R, R, )=—i¢; [R, R, )=it;
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» The projected Hamiltonian reads
H = V(n)

h2 2
» If V(n) is quadratic in 7, i.e., H = 5 *;;* T then we will have Landau levels for
m

composite fermions

» The LLL wave function of composite fermion is given by (ignoring the Gaussian

factor)
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The two-particle bound state problem in the LLL can be equally described by the
electron and vortex guiding centers (R,, R) or the CF guiding-center (R) and

cyclotron coordinate ()
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c? = g, = 2sv is the vortex charge in unites of the electron charge e



Composite Fermion Substitution
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How to introduce CFs into our problem? R, = R+ cn
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Great news! The p-filled CF LL state is the Hartree-Fock ground state of Hcp

(R,R,) < (R,n)

By introducing the CF coordinates, we have enlarged our Hilbert space!

Murthy & Shankar, RMP (2003)



Spin Liquid: An Example of Enlarged Hilbert space

> In the field of quantum spin liquids in Mott insulators, enlarged Hilbert space is
common

» Starting from the quantum Heisenberg Hamiltonian, to capture the bond
correlation in a spin liquid, one usually introduce the spinon operator
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» However, the local basis went from | 1 ),| | ) to [00),|10),|01),]|11). To stay in
the physical Hilbert space, we impose the constraint fTT i+ ff fi=1

» The mean-field theory is obtained by minimizing

(M| HIWME) + D A PME S Sy + 7 fi) = 11PME)

» The physical wave function is obtained by using the Gutzwiller projector

|\Pphys> — PG|‘PMF>



Enlarged Hilbert Space of Composite Fermions

» The CF Hamiltonian lives in the enlarged Hilbert space. However, it does not
depend on the vortex coordinates, so the eigenstates can be written as y, @ y,,

where Y, can be arbitrary

» The vortex function y, represents a gauge symmetry because physical quantities

also do not depend on y,

» How do we deal with this gauge symmetry? Just like how we deal with the gauge
potential in EMs, we just need to commit to a gauge choice Wphys = We X l//vG

> We can define a projector P = | w9 )y |, then

Z =Tr e PHe = Tr e PHcrp,

» Finally, for an arbitrary CF state, we can extract a physical state from it:

|l//phys>® [y ) = Pglyep)



How To Implement Constraint?

» In a mean-field treatment, constraints are usually implemented as Lagrangian
multipliers applied to some expectation values

» However, we don’t have an operator form of the constraint. Our constraint is basically
the wave function must be in the direct product form

» What can we do? We shall do our best!

(werl P @) lwer) = W 1@ [vy)) Vg
Note that the vortex density operator p,(q) form a complete basis for all one-body
vortex operators, so we are doing the best we can for a Hartree-Fock calculation

> Which ¥ shall we use? Choose a y°, perform HF calculation to obtain yr, then use
the projector P to obtain the physical wave function Yphys: We should use whichever

G .
w,” that gives us the lowest energy for Yphys:

» This sounds fun, but almost impossible to do. Let’s take a guess. The vortices are

1
bosons with a filling factor of v, = 5 so we take ¥ = ll/iiﬁghlin = H (& — 4})2

1<j



How To Implement Constraint?

> “Justification” of the choice of the bosonic v = 1/2 Laughlin state as y: The

v=1/2

physical wave function Wphys = <l//Laughlin | wCE) is equivalent to Jain’s wave

function ansatz

» For a Laughlin state, there is no charge fluctuation:
<l/fLaughlin [P/ ] WLaughlin> =0forg #0

Summary: The unconstrained electron problem is mapped to a constrained CF
problem, with the mean field constraint given by (wr|p,(q) |wep) = O for

q # 0. The electron wave function is then given by Wphys = <"”Iillfghlin | WCE)



» Let’s consider the v = 1/3 filling. This corresponds to a CF filling of v* = 1

» The single-particle CF LLL wave function is given by y, = M2ty

» The v* = 1 CF state is a Slater determinant
TCF — H(Zl — Zj)e zizigi/zbﬂvz
i<j

» The physical, electronic wave function is obtained by projected onto the vortex state

lehys = (¥} Ycp)
= JdﬂB(C ) [16- 9] ] @ — e
i<j i<j
=[[@-27
i<j

Also see Junren Shi, PRR (2024)



Summary So Far

» The extended Hamiltonian theory by Murthy and Shankar provides an operator-
based approach to the fractional quantum Hall effect

» They’ve shown that by the CF substitution, one can obtain the CF Hamiltonian that
amendable to Hartree-Fock calculations, but with the constraint

Werl P 1 wer) = Wl L p (@) lyE) Vg

» We showed that by using the same projective construction technique from QSL, we
can construct the physical wave function from the mean-field solution. In particular,

if we choose |PY) = |P¥=2 . ) the wave function is equivalent to Jain’s wave
v Laughlin

function ansatz



How to apply this theory to Fractional Chern Insulators?



Map a Chern Band to the LLL

» Let’s look at the LLL Hamiltonian again
1 22
HyiL = D V@™ pomp(@pGMp(—9)
q

> Previously, we have stated that the projected density operator is given in terms of

the guiding center operators. Equivalently, we can also demand pgppp satisfies the
Girvin-MacDonald-Platzman (GMP)algebra

e XD,
lrgmPp(91)s PGMP(G2)] = 2isin( 5 2 )pgMmpg; + ¢2)

» Murthy and Shankar (’12) made the observation that since pgpp(¢) form a
complete basis for one-body operators, the band-projected density operator can be

expanded using pGMP

pp(@) = ) c(q. Gpgmp(q + G)
G

» This way, we can write a band-projected Hamiltonian in terms of pgpp, then apply
the same projective construction procedure outlined earlier



The Projected Wave Function is a Hyperdeterminant

» What is a hyperdeterminant?

P,O,RES)y

» If T'is a rank-2 tensor, then Hyperdet(7) is the standard determinant

> If Ty = A;;ByCy), then Hyperdet(T') = det(A) det(B) det(C). So the Laughlin state
is a hyperdeterminant.

» The projected wave function is a hyperdeterminant of a rank-4 tensor.
» The Slater determinant is a hyperdeterminant of a rank-2 tensor
» The bosonic Laughlin state is a hyperdeterminant of a rank-3 tensor

» The fermionic Laughlin state is a hyperdeterminant of a rank-4 tensor



» Starting Hamiltonian
H = P(AHy + H;)P

» By varying 4 we can kill the FCI state
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Result: Mean-Field Calculation

CF band structure from
constrained HF
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Result: Projected Wave Function

Beyond mean-field: |lehys> = P;|Y¥YcE)
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What's Next?

» Can we generalize this to paired CF states to enable the description of non-Abelian
states (Hyperphaffian?)

> In the Landau level setting, it is reasonable to assume the vortex state y is the

v = 1/2 bosonic Laughlin state. In FCI, there is no reason to believe this is still
true.

> In our approach, y¥ is essentially a variational parameter. Optimizing w will both
leads to improved mean-field theory and projected wave functions



Summary

» We have developed a projective construction of the composite fermion state in a
partially filled Chern band with C = £ 1

> At the mean-field level, the wave functions of the ground state and excited states
are found self-consistently in an enlarged Hilbert space

» Beyond the mean field, these wave functions can be projected back to the
physical Hilbert space to construct the electronic wave functions

Xiaodong Hu Ying Ran

Hu, DX and Ran, PRB, 109, 245125 (2024)



