
The Density Matrix Renormalization Group:  
Introduction and Overview

• Introduction to DMRG as a low entanglement approximation
– Entanglement
– Matrix Product States
– Minimizing the energy and DMRG sweeping

• The low entanglement viewpoint versus the historical RG viewpoint
• Time evolution for spectral functions
• Some generalizations and extensions of DMRG
• Methods for 2D

– applications to t-J model and stripes
– Frustrated magnets and spin liquids

Software:  ALPS (well developed, inflexible);  itensor.org (new)
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What is entanglement?

• Intuitive idea:  general correlation between two parts of 
a system (think two separate spins: a Bell pair)

• Not always obvious:  Which is more entangled?
– 1)  |↑↑> + |↓↓>   or
– 2)  |↑↑> + |↓↓> + |↑↓> + |↓↑>   ??

• Answer:  1) is perfectly entangled.  2) is unentangled:
– (|↑> + |↓>) (|↑> + |↓>)

• To measure entanglement,  we need to put the 
wavefunction in its most diagonal form.

• The solution is easy:  singular value decomposition 
(SVD).



SVD/Schmidt Decomposition
• Let the system have two parts: left and right  

–     |Ψ>  = ∑ Ψlr  |l> |r>              
• Treat Ψlr as a matrix:  perform the simple matrix factorization 

“singular value decomposition” (SVD): Ψ= U D V,  with U and V 
unitary, D diagonal.

• The diagonal elements λ of D are the singular values or Schmidt 
coefficients. In quantum information this is called the Schmidt 
decomposition.  The Schmidt basis vectors are given as                   
|α> = ∑r Vαr  |r> ,  |ᾶ> = ∑l Uαl  |l>  ; the wavefunction is                
|Ψ>  = ∑α   λα  |ᾶ> |α>   (diagonal). 

• The reduced density matrix for the left side is:
–      ρll’ = ∑r  Ψlr Ψl’r  

• If you insert the SVD, you find that U contains the eigenvectors of 
ρ, and the eigenvalues are (λα)2.   Note ∑α (λα)2=1 (normalization)



Von Neumann entanglement entropy 

• If we think of (λα)2  as the probability of the state |ᾶ> |α>, 
then we can plug in the standard probability formula to 
get the von Neumann entropy
–    S = -∑α (λα)2  ln (λα)2

• There are several other entropies (different forumulas)

• Low entanglement = small S  occurs when the  λα fall off 
fast as the index  α increases.

• Thus we have a natural low entanglement approximation:  
approximate the wavefunction by keeping a small number 
of α (the largest).

• In DMRG we imagine we do this Schmidt decomp for all 
positions of the dividing line between left and right.

i j S ~ entanglement 
across the cut



Matrix Product States 
• Insert  a truncated set of density matrix/Schmidt 

eigenstates at every nn link (1D) (total error = sum of 
probabilities you’ve thrown away)

• The Schmidt basis states for position  l + 1 must be 
linear combinations of those at l 

• This produces a Matrix Product State (MPS) formula 
for the wavefunction:

• A function is just a rule for giving a number from the 
inputs--here the {s} tell which matrices to multiply 
(first and last A’s are vectors).

Ψ(s1,s2,..sN) ≈ A1[s1] A2[s2] ... AN[sN]

|�l+1� =
�

�l,sl

A[sl]�l+1�l |sl�|�l� αl sl

αl+1



Diagrams for Matrix Product States

In an MPS, the basic unit has an extra index, like a Pauli spin matrix; or you 
can call it a tensor

Vertices are matrices or tensors.  All internal lines are summed over.  
External lines are external indices, usually associated with states

Ordinary Matrix Multiplication:  ABC = 

A[s]ij = i j

s

A
Tr[AsBt] = 

s t

A B
Simple 
diagram:
gives f(s,t)

Matrix Product State:

≈

Ψ(s1,s2,..sN) ≈ A1[s1] A2[s2] ... AN[sN]

2N N m2    for 
m x m 
matrices

s1 s1sN sN

Dimensions:  i, j: m or D     s:  d



MPS as Variational states
• Two things needed:  

–Evaluate energy and observables efficiently
–Optimize parameters efficiently to minimize energy

• Observables:

–Working left to right,  just matrix multiplies,  N m3

• Optimization:
–General-purpose nonlinear optimization is hard
–Lanczos solution to eigenvalue problem is one of the 

most efficient optimization methods (also Davidson 
method).  Can we use that?  Yes!

Operators: Sz S-S+
+    ...    = HblockJ/2
|ψ>

<ψ|



DMRG algorithm:  one step
ψ

l+1l
αl-1 βl

Fixed m states Fixed m states

1. Use exact diagonalization to get the lowest energy Ψ(αl-1,  sl ,  sl+1,  βl+2 ) 
within the basis of fixed block approximate Schmidt vectors αl-1   βl+2  and two 
sites sl ,  sl+1

Do an SVD on the 4 parameter wavefunction to split it up into new A[sl] 
and A[sl+1]

≈



DMRG Sweeping Algorithm

DMRG sweeps

•The optimization sweeps back and forth through the 
system.

•At each step, diagonalize approximate representation of 
entire system (in reduced basis)
•Construct density matrix for block, diagonalize it, keep 
most probable eigenstates (or SVD version)
•Transform / update operators to construct H
•Sweep back and forth, increase m



Convergence in 1D
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DMRG: two ways of thinking about it

• What I explained here:  the MPS variational state point of 
view.

• The original view: Numerical RG;  “Blocks” which have 
renormalized Hamiltonians (reduced bases) and operator-
matrices in that basis
– What is a block?

• A block is a collection of sites (1 ... j),  a matrix 
product basis for those sites, and the matrix 
representation of necessary operators in that basis.

• We can think of a block as a renormalized system 
(doesn’t have all its original d.o.f.) and the whole 
DMRG sweeping algorithm as a renormalization of the 
whole system (Wilson’s orginal numerical RG).

• Some things are easier to think about in each picture. 
DMRG practitioners should know both pictures!



DMRG: overview of extensions, generalizations, etc
• Original two papers covered ground state energies and properties 

of 1D spin systems.
– Applications to fermions and targeting several excited states was 

understood from the beginning and was quickly implemented.
• Application to ladder systems was also done very soon--the first 

steps towards 2D.  Later I will cover recent 2D methods.
• Another area of strong development: dynamics.  First work 

produced spectral functions (frequency, not time); later, work 
showed how to do real and imaginary time dynamics (Vidal). 

• Classical Stat mech systems:  developed early on; related to transfer 
matrices.

• Quantum chemistry: solving small molecules in a Gaussian basis. 
First work: White & Martin;  now, most well known practitioner is 
Garnet Chan (Cornell --> Princeton).

• Lots of connections to quantum information--a major develpment I 
don’t have time to do justice to. 



Time Evolution (Vidal,...)
Suzuki Trotter decomposition:  
             exp(-iHτ) ≈ exp(-iH12τ) exp(-iH34τ) ... exp(-iH23τ) ...

exp(-iHijτ)  =  

ψ’
ψ

=

In DMRG, the bond operator for 
the current middle two sites is 
trivial to apply:

si sj

s’i s’j



• Finite system method:

• During each step, instead of finding the ground state, we 
can apply Tij = exp(-i Hij τ) (or leave ψ alone).

• When to apply T’s:  several versions:
–Standard even/odd breakup:

• 1 --- 2 --- 3 --- 4   do odd bonds in left-to-right half sweep
• ---7 ---  6 ---5 ---  do evens in right to left half sweep

–White-Feiguin version:
• 1   2    3  4   5  6  7   do all bonds in each half sweep
• 14 13 12 11 10 9  8    reverse order each half sweep

DMRG Sweeps



Calculation of Spectral functions
• Start with standard ground state DMRG, get φ
• Apply operator to center site 

• Time evolve:

• Measure time dependent correlation function

• Fourier transform with x=0 to get N(ω) or in x and t 
to get S(k,ω)
–But what about finite size effects, finite time, broadening, 

etc??

|⇥(t = 0)� = S+
0 |�0�

G(x, t) = ��0|S�x |⇥(t)⇥ = ��0|S�x (t)S+
0 (0)|�0⇥

|�(t)� = e�i(H�E0)t|�(0)�



Finite size effects: gapped systems
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Growth of entanglement with time
• Lots of work on growth of entanglement with time--sounds very 

discouraging at first
– For “macro” changes to the wavefunction, S grows linearly (e.g. 

suddenly change the Hamiltonian).  Then matrix dimension m 
must grow exponentially (and effort ~ m3)  

• Fortunately, for what we need here, one local change, growth is only 
logarithmic!
– Still limited in total time we can simulate--still the key issue

• Example:  for spin chains, we can go out to tmax ~ 30. 
• It appears that one should be limited in frequency resolution to         

~1/tmax

• But:  the long time behavior is determined almost completely be the 
singularities in A(ω), and if there are just a few, we can fit them and 
get extremely high resolution  (SRW, Affleck, Pereira)
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Generalizations of MPS
• Periodic BCs: long a weakness of DMRG  (m→m2)

– New variational state: 
– key issue is computational:  optimization to minimize E

• Ostlund and Rommer (‘95) m = 12
• Verstraete, Porras, Cirac (PRL 93, 227205 ‘04)  calc time ~m5

• Pippan, White, Evertz (PRB 82, 024407 (2010) ) calc time ~ m3

• Infinite systems
– Natural state:

• But:  very hard to optimize A
– Much better:

• Trotter imaginary time evolution: odd links, then even, repeat
–iTEBD  (infinite time evolving block decimation)

A A A A A ......

A B A B A ...... Vidal, PRL 98, 
070201 (2007)



Critical 1D systems

⇒
DMRG/NRG MPS

Critical systems:  
1)   S ~ ln(L), so MPS eventually fails
2)    MPS does not exhibit scale invariance naturally

⇓

Real space RG

⇒
Binary tree tensor network

Still fails due to S ~ ln(L)  !!



Tensor networks for 1D critical systems

• Entanglement gets organized at different length scales at different 
layers: RG

• At criticality, expect translational/scale invariance in both directions!  
Compression: superb

• Computation time:  m9 L ln L, or m9 ln L for translational inv. systems, 
but m=6 has  energy errors ~ 10-7   (Critical transverse field Ising model)

• State directly yields CFT central charge, scaling dims of primary fields
• Accurate correlations at large distance, e.g. r = 109   !!

Multiscale entanglement 
renormalization ansatz (MERA)

Vidal, PRL 99, 220405 (2007)

Rizzi, Montagero, Vidal PRA 77, 052328 
(2008)  (tMERA)
Evenbly & Vidal, arxiv:0707.1454
Pfeifer, Evenbly,&Vidal, arxiv: 0810.0580



2D algorithms

• Traditional DMRG method (MPS state)

Long range bonds

S ~ Ly (“area law”)
m ~ exp(a  Ly)

Cut

Calc time:  Lx Ly2 m3;     allows m ~ 10000, Ly ~ 10-12



Stripes forming from a blob of 8 holes
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Stripes forming from a blob of 8 holes

12x8
Cylindrical BCs
t=1, J=0.35
t’=t’’=0
8 holes
AF edge 
pinning fields 
applied for two 
sweeps to favor 
one stripe



Stripes not forming from a bad initial 

12x8
Cylindrical BCs
t=1, J=0.35
t’=t’’=0
8 holes
No pinning 
fields.
Initial state has 
holes spread out 
so favored 
striped state is 
hard to find.
Energy higher 
by ~0.3 t.



Curved Stripe forms due to open BCs

12x8
Open BCs
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No pinning 
fields



Projected entangled pair states 
• Generalize the 1D MPS ansatz to 2D:

– Much more natural representation!
– Key issues:  optimization, contraction

– V&C approach:  CPU ~ Lx Ly m10      No exponentials!!

• MERA is another tensor network approach to 2D with 
similar properties

• Fermionic PEPS:  simple treatment of fermionic exchange 

Basic unit is 5 index 
tensor,  blue/down 
index is state of a site

(Nishio, Maeshima, Gendiar, and Nishino, 
cond-mat/0401115;

Verstraete and Cirac, condmat 0407066)

w e

n

s
PEPS



Some Practical aspects of DMRG for hard 
systems and Applications to 2D

• Extrapolation in truncation error for energy and 
observables

• Tips for very efficient calculations
• Some results for 2D Heisenberg models:  
–Square lattice
–Triangular lattice
–Kagome lattice



Square lattice: benchmark against 

• Cylindrical BCs: periodic in y, open in x
• Strong AF pinning fields on left and right edges
• 21 sweeps, up to m=3200 states, 80 hours

20 x 10

0.4



Extrapolation of the energy

0e+00 2eï07 4eï07 6eï07
Truncation error

ï886.110

ï886.105

ï886.100

ï886.095
E

2000 site Heisenberg chain
Linear Fit

m=200
m=120

m=80
m=60

m=40 Extrapolation 
improves the 
energy by a factor 
of 5-10 and 
provides an error 
estimate.



Energy extrapolation
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(no derivation, just 
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Extrapolation of local observables(ref: White and 
Chernyshev, PRL 99, 127004 (2007))

• Standard result for a variational state

• Consequences:
–Variational calculations can have excellent energies but 

poor properties
–Since DMRG truncation error                ,              , but 

otherwise extrapolations vary as

•  These       extrapolations have never worked well.

|⇥⇥ = |G⇥ + |�⇥, �G|�⇥ = 0, ��|�⇥ = 1

A = (1 + ��|�⇥)�1(AG + 2�G|Â|�⇥ + ��|Â|�⇥)

E = (1 + ��|�⇥)�1(EG + ��|Ĥ|�⇥)

⇥ � ⇥�|�⇤ E � �
A � �1/2

�1/2
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Improved finite size scaling: choosing aspect ratios to reduce 
finite size effects

• “Standard” measurements in QMC estimate M  using correlation 
functions and have large finite size effects 

• Can one choose a special aspect ratio to eliminate               term?
• What is behavior at large length scales?  Use finite system spin 

wave theory as a guide.

Long: 1D makes M 
small

Short: proximity to 
strong pinning makes 
M large

2

O(1/Ly)
O(1/Ly)

M

M



Square lattice
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Finite size spin wave theory

• Optimal choice                 eliminates linear term
• Even           has much smaller finite size effects 
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Tilted square lattice

• Tilted lattice has smaller DMRG errors for its width
• For this “16 √2 x 8 √2” obtain M = 0.3052(4)

0.45



Tilted square lattice

• Results are consistent with and with comparable 
accuracy to QMC! (of 1997, at least)

• Latest QMC (Sandvik&Evertz) -0.30743(1)  (No new E)
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Sandvik, QMC

Energy, 
extrapolated to 
thermo limit:
-0.669444(5)

Sandvik (1997):
-0.669437(5)



0.4

Traditional DMRG for triangular lattice Heisenberg model

See White & Chernyshev, PRL 99, 
127004 (2007)

ΔE ~ 0.3%,   Δ<Sz> ~ 0.01

Extrap order param to thermodynamic limit:  M = 0.205(15) 



Spin Liquid Ground state of the S=1/2 
Heisenberg model on the Kagome lattice

Collaborators:   Simeng Yan and David Huse



A little history

• Key question: is it a valence bond crystal or a spin liquid? What 
kind of VBC or SL?

• Until our work most of the work favored this 36 site 
“honeycomb”  VBC

 - 0.1 - 0.7

The S=1/2 Heisenberg Kagome 
systems has long been thought to be 
an ideal candidate for a spin liquid 
because of its high frustration.
General agreement there is no 
magnetic order.



Practical Issues for Kagome
1. Metastability: getting stuck in a higher energy state 

(usually an issue only on wider cylinders)
• Need to understand system and find a simple state close 

to the ground state to initialize DMRG

2. Strong dependence on width (and shift) of cylinders
• Need to do many cylinders and understand patterns of 

behavior

3.Open edges--obtaining bulk cylinder behavior
• This is a minor problem for this system
• Open ends useful for pinning, selecting different 

topological sectors...



Ground state energies per site
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Energies of various cylinders and methods
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XC8 cylinder, biased to HVBC



YC12 cylinder, one started in HVBC



Ruling out an HVBC on a width 12 cylinder
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Summary

• DMRG and related low entanglement approximations 
have been the most powerful and diverse techniques 
for 1D systems known.

• Recently, many 2D models with either frustration or 
fermions can be treated on cylinders large enough to 
extrapolate to 2D

• Lots of fascinating connections to quantum information 
and entanglement


