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We know the problem
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What’s there to do?
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We know the answer…



We would like to understand:
• Why gaps open at some fractional filling factors, and 

do not open at others?

• What determines those filling factors?

• How are fractional charges realized? Other properties 

of quasi-particles?

• Edge structure

• Magnitude of the gaps, dependence on type of 

interaction

• Response functions

• …



Difficulties: 
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Neglecting the interaction is not a good starting point for fractional fillings!

Two dimensionless numbers in the problem

1. Ratio of interaction energy to cyclotron energy 𝑑𝑑
2/𝑙𝑙𝐵𝐵
ℏ𝜔𝜔𝑐𝑐

2. Filling fraction



Theoretical approaches:
• Guessing wave functions – Laughlin wave function

• Exact numerical diagonalization 

• Wire constructions

• Flux attachment – Composite Fermion Theory



𝜈𝜈 = 1
3

: The Laughlin wave function in five easy steps
1.  Lowest Landau level in the symmetric gauge
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Type equation here.
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2.  Filling all states with 0 < 𝑚𝑚 < 𝑁𝑁.  A Slater determinant wave function

• A droplet of a full Landau level. 

• The Slater determinant is van der Munde’s
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• The highest power is 𝑁𝑁, the size of the droplet ~𝑁𝑁𝑙𝑙𝐵𝐵2

𝜈𝜈 = 1:



3. Adding a flux quantum at the center 𝑚𝑚 → 𝑚𝑚 + 1
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4. The Laughlin wave function – a droplet with three times the same size
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5. The Laughlin quasi-hole 
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As expected, 1/3 of the electron charge



Fractional statistics 
What is the statistics of a quasi-particle?

• Construct a Hamiltonian with two quasi-particles at the ground state

𝐻𝐻 {𝑟𝑟𝑖𝑖};𝑅𝑅1,𝑅𝑅2
• Interchange 𝑅𝑅1 and 𝑅𝑅2 adiabatically

• The ground state acquires a geometric phase

∫ 𝑑𝑑ℓ 〈𝑔𝑔. 𝑠𝑠. (𝑅𝑅1,𝑅𝑅2)|𝛻𝛻𝑔𝑔. 𝑠𝑠. 𝑅𝑅1,𝑅𝑅2 〉
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𝐼𝐼𝑚𝑚∫ 𝑑𝑑ℓ ⋅ Ψ𝑅𝑅1 𝛻𝛻𝑅𝑅1Ψ
𝑅𝑅1 = 2𝜋𝜋∫ 𝑑𝑑𝑑𝑑 ⋅ 𝑛𝑛

A geometric phase for a single quasi-hole

Quasi-hole winding another – an extra 2𝜋𝜋/3

Anyons



In summary, 

The virtues of Laughlin’s wave function:

1. For a small number of electrons – remarkable overlap with the 

exact ground state

2. Exact ground state of a designer-made Hamiltonian

3. Gets the topological properties right

Estimate of an energy gap



Flux attachment and Composite Fermion Theory 

Halperin, Lee, Read and many other  works (1993)



Composite fermion theory 
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Flux attachment
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where  𝛻𝛻 × 𝑑𝑑 𝑟𝑟 = 𝛼𝛼𝜙𝜙0 ∑𝑗𝑗 𝛿𝛿 𝑟𝑟 − 𝑟𝑟𝑗𝑗

𝛼𝛼 even - (composite) fermions
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Δ𝑐𝑐 = 𝑐𝑐 − 𝛼𝛼𝜙𝜙0𝑛𝑛

B(c)

Mean field theory:  𝛻𝛻 × 𝑑𝑑 𝑟𝑟 = 𝛼𝛼𝜙𝜙0〈𝑛𝑛〉



At the mean field Hartree level, we map interacting electrons

𝑛𝑛,𝑐𝑐 ⇒ 𝑛𝑛,Δ𝑐𝑐

where  

Δ𝑐𝑐 = 𝑐𝑐 − 2𝜙𝜙0𝑛𝑛. 

This changes the filling factor   𝜈𝜈 ⇒ 𝜈𝜈𝐶𝐶𝐶𝐶

where 1
𝜈𝜈𝐶𝐶𝐶𝐶

= 1
𝜈𝜈
− 2

Fractions are mapped onto integers!

𝑝𝑝
2𝑝𝑝 + 1

⇒ 𝑝𝑝

Gaps appear “naturally”, but with wrong energy scale 𝐸𝐸𝑔𝑔 = ℏΔ𝜔𝜔𝑐𝑐
= ℏ𝑒𝑒ΔB/𝑚𝑚𝑐𝑐. 



Large Δ𝑐𝑐 –Quantum Hall States
Fractional charge 

Insert a composite fermion into a FQHE system:

• A charge 𝑒𝑒 is inserted

• 𝛼𝛼 flux quanta are turned on, generating an azimuthal electric field, 

leading to a radial current, reducing the local charge. The net 

charge:

𝑒𝑒 − 2𝜙𝜙0𝜎𝜎𝑥𝑥𝑥𝑥 = 𝑒𝑒 1 − 2 𝑝𝑝
2𝑝𝑝+1

= 𝑑𝑑
2𝑝𝑝+1



Excitation modes

𝜌𝜌𝑑𝑑 = 𝜌𝜌𝐶𝐶𝐶𝐶 + 0 2ℎ/𝑒𝑒2

−2ℎ/𝑒𝑒2 0

An excitation mode - det 𝜌𝜌(𝑞𝑞,𝜔𝜔) = 0 (Remember that 𝐸𝐸 = 𝜌𝜌𝜌𝜌).   

(Simon and 
Halperin, ’93) 



Lower Δ𝑐𝑐
Composite fermions in the Shubnikov deHaas regime

• 𝜌𝜌𝑥𝑥𝑥𝑥 is not quite quantized 

• 𝜌𝜌𝑥𝑥𝑥𝑥 oscillates with magnetic field and chemical

potential, but does not get all the way to zero. 

Oscillations originate from oscillating density of 

states. 



Herfort et al., 1994

Stormer et al., 1994



H. Stormer and JK Jain, private communication.



Even weaker Δ𝑐𝑐
Do composite fermions exist semi-classically?

(Willett 1993)

Geometric resonances 
between cyclotron radius of 
composite fermion cpF/𝑒𝑒Δ𝑐𝑐
and wavelength of a surface 
acoustic wave



The cyclotron radius of composite fermions 𝑐𝑐𝑝𝑝𝐶𝐶
𝑑𝑑Δ𝐵𝐵

is a measurable quantity 

even when their quantum Hall effect is not.  

Note, 𝑐𝑐𝑝𝑝𝐶𝐶
𝑑𝑑Δ𝐵𝐵

= 𝑐𝑐𝑝𝑝𝐶𝐶
𝑑𝑑∗𝐵𝐵

-

a fractional charge in the original, physical, field. 



The smallest Δ𝑐𝑐 possible -𝜈𝜈 = 1
2

Do composite fermions exist even when Δ𝑐𝑐 = 0? 

If so, how do they behave?

Electric dipoles moving in straight lines in a strong magnetic field

A Fermi surface of composite fermions?

Identifying a Fermi surface

• Cyclotron radius

• Anomalous skin Hall effect 



Think the resistivity at non-zero 𝑞𝑞, in the direction perpendicular to 𝑞𝑞.

Drude resistivity at 𝑞𝑞 = 0 is 𝜌𝜌𝑥𝑥𝑥𝑥 = 𝜌𝜌𝑥𝑥𝑥𝑥 = 𝑚𝑚
𝑛𝑛𝑑𝑑2

1
𝜏𝜏
, where 𝜏𝜏 is the time for a current to decay in 

the absence of a driving force. 

Current decays even without impurities. Decay time ~1/𝑞𝑞𝑣𝑣𝐶𝐶.  

Resistivity 𝑚𝑚
𝑛𝑛𝑑𝑑2

1
𝜏𝜏

~ ℎ
𝑑𝑑2

𝑞𝑞
𝑘𝑘𝐶𝐶

, completely geometric!

𝑞𝑞



Willett, 1993



Does a Fermi surface imply a Fermi liquid?

• Composite fermions interact with a fluctuating magnetic 

field, which is proportional to the fluctuating electron 

density.

• Most “dangerous” – interaction with slow dynamics, 

which is what we have here. 



The source of the slow dynamics – slow charge relaxation in a strong magnetic field. 

The relaxation dispersion depends on the range of electron-electron interaction. 

𝓛𝓛 = 𝜳𝜳+ 𝒓𝒓 𝐢𝐢𝝏𝝏𝒕𝒕 − 𝒂𝒂𝟎𝟎 𝚿𝚿 + 𝚿𝚿+ 𝒓𝒓
𝟏𝟏
𝟐𝟐𝟐𝟐 −𝒊𝒊𝛁𝛁 −

𝒆𝒆𝑩𝑩 × 𝒓𝒓
𝒄𝒄 + 𝒂𝒂 𝒓𝒓

𝟐𝟐

𝚿𝚿 𝒓𝒓 +

𝟏𝟏
𝜶𝜶𝚽𝚽𝟎𝟎

𝒂𝒂𝟎𝟎𝛁𝛁 × 𝒂𝒂 + 𝜶𝜶𝝓𝝓𝟎𝟎
𝟐𝟐∫ 𝒅𝒅𝒓𝒓′𝛁𝛁 × 𝒂𝒂 𝒓𝒓 𝑽𝑽 𝒓𝒓 − 𝒓𝒓′ 𝛁𝛁 × 𝒂𝒂(𝒓𝒓′)

𝒊𝒊𝒊𝒊 ∼ 𝒒𝒒𝟐𝟐𝑽𝑽 𝒒𝒒 𝝈𝝈𝒙𝒙𝒙𝒙 𝒒𝒒 ∼ 𝒒𝒒𝟑𝟑𝑽𝑽(𝒒𝒒)



• Self energy ⇒ effective mass ⇒ cyclotron gap

• Need to change an energy scale!

• Small parameter is not the interaction scale, it is the 

inverse of the number of filled composite fermions 

Landau levels

𝐸𝐸𝑔𝑔 =
𝜋𝜋 2
𝛼𝛼3/2

𝑒𝑒2

𝑙𝑙𝐵𝐵
1

𝛼𝛼𝑝𝑝 + 1 log(𝛼𝛼𝑝𝑝 + 1)



What other states can 
composite fermions at 
Δ𝑐𝑐 = 0 form?
Future will tell…



A concluding comment –

Charge fractionalization is manifest beyond the 
limits in which it is “justified”. 



Lecture II:

• Reminder of the first lecture
• Composite fermion theory and Jain’s wave functions
• Bi-layer systems in the quantum Hall regime
• Stripe states in a partially filled Landau level



In the first lecture –
1. Laughlin’s wave function
2. Composite fermion theory

1. FQHE of electrons ⟹IQHE of composite fermions
2. Shubnikov deHaas regime of composite fermions
3. Semiclassical physics of composite fermions
4. 𝜈𝜈 = 1/2 state



Wave functions 
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Wave functions 

𝑒𝑒−
∑𝑖𝑖 𝑧𝑧𝑖𝑖 2Δ𝐵𝐵
4Φ0 𝑒𝑒2𝑖𝑖 ∑𝑖𝑖<𝑗𝑗 arg 𝑧𝑧𝑗𝑗

traded for

𝑒𝑒−
∑𝑖𝑖 𝑧𝑧𝑖𝑖 2𝐵𝐵
4Φ0 𝑧𝑧𝑖𝑖𝑗𝑗2

Multiply the mean field wave 
function by 

∏𝑖𝑖<𝑗𝑗 𝑧𝑧𝑖𝑖𝑗𝑗
2 𝑒𝑒−

∑𝑖𝑖 𝑧𝑧𝑖𝑖
2𝐵𝐵1/2

4Φ0

Clarifies how electrons are kept away 
from one another



Generalization – Jain’s wave functions:

Trial wave function  = 𝑒𝑒−
∑𝑖𝑖 𝑧𝑧𝑖𝑖

2𝐵𝐵1/2
4Φ0 𝑧𝑧𝑖𝑖𝑗𝑗2 |𝑝𝑝 𝑓𝑓𝑖𝑖𝑙𝑙𝑙𝑙𝑒𝑒𝑑𝑑 𝐿𝐿𝐿𝐿𝑠𝑠 𝑑𝑑𝑎𝑎 Δ𝑐𝑐⟩

projected to the electronic lowest Landau level. 





Bi-layer quantum Hall systems 



Bi-layers in the quantum Hall regime

Important parameters:
• Inter-layer tunneling
• Inter-layer Coulomb coupling 

(depends on distance 𝑑𝑑)
• Densities in both layers 𝑘𝑘𝐶𝐶,1, 𝑘𝑘𝐶𝐶,2
• The usual suspects – magnetic 

field, temperature



Bi-layers in the quantum Hall regime

Measurements: 
• Tunneling resistance
• “conventional” resistance 
• Coulomb drag
• Counterflow

Naively, just a big resistance. 
Voltage dependence gives much information on the two layers



Bi-layers in the quantum Hall regime

Measurements: 
• Tunneling resistance
• “conventional” resistance 
• Coulomb drag
• Counterflow



Bi-layers in the quantum Hall regime

Measurements: 
• Tunneling resistance
• “conventional” resistance 
• Coulomb drag
• Counterflow

V

𝐼𝐼
𝐼𝐼

Naively, resistance due to friction



Bi-layers in the quantum Hall regime

Measurements: 
• Tunneling resistance
• “conventional” resistance 
• Coulomb drag
• Counterflow

Naively, resistors in series



Bi-layer at 𝝂𝝂𝑻𝑻 = 𝟏𝟏

𝜈𝜈 =
1
2

𝜈𝜈 =
1
2

• Assume very weak tunneling, 
strong magnetic fields. 

• The only dimensionless 
parameter - 𝑑𝑑/ℓ



Inter-layer tunneling counter-flow resistance Coulomb drag

(Lilly et al.)



Large 𝑑𝑑/ℓ - weakly coupled layers 

Two disconnected 𝜈𝜈 = 1/2 states are mapped onto two weakly 
coupled Fermi liquids of composite fermions.
Coulomb drag: the current carrying composite fermions scatter off the 
static Fermi liquid in the passive layer. 

1
𝜏𝜏
→ 0 when 𝑇𝑇 → 0 by the Landau argument. 



Typically, 1
𝜏𝜏
∝ 𝑇𝑇2 but here the slow mode 𝜔𝜔 ∝ 𝑖𝑖𝑞𝑞3 leads to a 

stronger scattering 
1
𝜏𝜏
∝ 𝑇𝑇

4
3

(Muraki et al.)



Tunneling: typically, tunneling between two identical Fermi liquids is “easy”
Either 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
independent of 𝑉𝑉 or peak at zero voltage.

Here strong suppression of the tunneling. 
The reasons: 
• the tunneling object is an electron, not a composite fermion. 
• The tunneling charge needs to disperse away to the edges of the system, and charge 

relaxation is slow. 



Small 𝑘𝑘𝐶𝐶𝑑𝑑 – strongly Coulomb-coupled layers

• Cancelling the magnetic field by a different flux attachment –
attaching one flux quantum to each electron, with the electrons 
interacting with flux quanta of both layers.

• Said differently - 𝛼𝛼 = 1
• Mapping the 𝜈𝜈 = 1

2
⨁ 1

2
state to two coupled superfluids

• Wave function

𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗 𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑗𝑗 𝑧𝑧𝑖𝑖 − 𝑤𝑤𝑗𝑗 𝑒𝑒
− 𝑧𝑧 2

4𝑙𝑙𝐻𝐻
2



Consequences:
• For symmetric current – quantized Hall state

• For anti-symmetric current - superfluidity 

• Large zero bias tunneling peak (Josephson-like)

• Goldstone mode which is a Plasma mode of anti-
symmetric density

• BKT transition when vortices proliferate



The transition between the two limits

The longitudinal drag resistance develops a very large peak at the transition



The peak at the transition and transport in a mixed system

Consider a  system made of two phases, each one with its own resistivity 
matrix 𝜌𝜌1,𝜌𝜌2. 
If transport is governed by a local Ohm relation

∇ × 𝐸𝐸 = 0
∇ ⋅ 𝜌𝜌 = 0

𝐸𝐸 𝑟𝑟 = 𝜌𝜌 𝑟𝑟 𝜌𝜌(𝑟𝑟)

Then the macroscopic resistivity satisfies

𝜌𝜌𝑥𝑥𝑥𝑥2 + 𝜌𝜌𝑥𝑥𝑥𝑥 − 𝜌𝜌𝑥𝑥𝑥𝑥,0
2 = 𝜌𝜌𝑥𝑥𝑥𝑥,0



𝜌𝜌𝑥𝑥𝑥𝑥

𝜌𝜌𝑥𝑥𝑥𝑥

When the two phases are on the two sides of the semi-circle, a 
transition between them involves a peak in dissipation

𝜌𝜌𝑥𝑥𝑥𝑥2 + 𝜌𝜌𝑥𝑥𝑥𝑥 − 𝜌𝜌𝑥𝑥𝑥𝑥,0
2 = 𝜌𝜌𝑥𝑥𝑥𝑥,0



And now for something completely different…
Breaking of translation symmetry

Half filled Landau level: 

at 𝜈𝜈 = 1
2

, 3
2

a compressible state

at 𝜈𝜈 = 5
2

, 7
2

an incompressible quantum Hall state

at 𝜈𝜈 = 9
2

, 11
2

… breaking of translation symmetry



Experimental indication –
• large anisotropy in the longitudinal resistivity
• Non-monotonic 𝜌𝜌𝑥𝑥𝑥𝑥.  

(Eisenstein group, Stormer group)



The picture – a different way interactions break the ground state 
degeneracy of a partially filled Landau level

The tool – Hartree-Fock analysis of the projected Coulomb 
interaction                                               (Fogler et al. Moessner et al.) 

The Hamiltonian 𝐻𝐻 = ∑𝑞𝑞 𝑉𝑉 𝑞𝑞 𝜌𝜌(𝑞𝑞)𝜌𝜌(−𝑞𝑞)

𝑘𝑘 𝒆𝒆𝒊𝒊𝒒𝒒�𝒓𝒓 𝑘𝑘′ = 𝛿𝛿𝑘𝑘′+𝑞𝑞𝑦𝑦,𝑘𝑘∫ 𝑑𝑑𝑥𝑥𝜙𝜙 𝑥𝑥 + 𝑘𝑘𝑙𝑙𝐵𝐵2 𝑒𝑒𝑖𝑖𝑞𝑞𝑥𝑥𝑥𝑥𝜙𝜙(𝑥𝑥 + 𝑘𝑘′𝑙𝑙𝐵𝐵2)



𝑘𝑘 𝒆𝒆𝒊𝒊𝒒𝒒�𝒓𝒓 𝑘𝑘′ = 𝛿𝛿𝑘𝑘′+𝑞𝑞𝑦𝑦,𝑘𝑘∫ 𝑑𝑑𝑥𝑥𝜙𝜙∗ 𝑥𝑥 + 𝑘𝑘𝑙𝑙𝐵𝐵2 𝑒𝑒𝑖𝑖𝑞𝑞𝑥𝑥𝑥𝑥𝜙𝜙(𝑥𝑥 + 𝑘𝑘′𝑙𝑙𝐵𝐵2)

Oscillations with 𝑞𝑞𝑅𝑅𝑐𝑐, decay for 𝑞𝑞𝑙𝑙𝐵𝐵 ≫ 1.

The projected Coulomb interaction

�𝑉𝑉 𝑞𝑞 = 𝑉𝑉0 𝑞𝑞 |𝐹𝐹𝑁𝑁 𝑞𝑞 |2 with 𝐹𝐹𝑁𝑁 𝑞𝑞 ∝ 𝜌𝜌0(𝑞𝑞𝑅𝑅𝑐𝑐).

Transforms the Hamiltonian from real space density 𝜌𝜌 𝑞𝑞 to “guiding center” 

space density       �𝜌𝜌 𝑞𝑞 ∝ ∑𝑥𝑥 𝑒𝑒−𝑖𝑖𝑞𝑞𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥+𝑞𝑞𝑦𝑦2
+ 𝑐𝑐𝑥𝑥−𝑞𝑞𝑦𝑦2

.  



The Hartree Fock energy

• Hartree: always positive, charging energy due to non-uniform 
charge density

The Hartree potential 𝑉𝑉0 𝑞𝑞 |𝐹𝐹𝑁𝑁 𝑞𝑞 |2⟨𝜌𝜌𝐿𝐿 −𝑞𝑞 ⟩
May be minimized to zero

• Fock: always negative

• The key – make the charging energy vanish. Possible due to the 
oscillations of 𝐹𝐹𝑁𝑁(𝑞𝑞)



At half filled levels – a striped phase (𝑞𝑞𝑥𝑥 = 0)
𝜈𝜈(𝑥𝑥)

𝑁𝑁

𝑁𝑁 + 1

Edge states pattern leads to anisotropy



Beyond Hartree-Fock, finite temperature

Away from the half-filled level – insulating bubble phases. 

(Fogler)





Before going off stage, I will go off topic…

Electron hydrodynamics (together with Scaffidi, Reuven, and the Ilani group)

• Drude theory – momentum loss to impurities        𝑅𝑅 ∝ 𝐿𝐿

• Landauer-Sharvin theory – resistivity with no impurities

• Scattering of electrons off one another – spread and erase     𝑅𝑅 ∝ 1/𝐿𝐿

A magnetic-field-free setup to create 1D topological superconductivity (with Lesser and Oreg)

Δ𝑒𝑒−𝑖𝑖𝑖𝑖 Δ𝑒𝑒𝑖𝑖𝑖𝑖Δ′𝑒𝑒𝑖𝑖𝑖𝑖



Using symmetries to flatten Dirac cones (with Sheffer and Queiroz)
• Making the Dirac velocity vanish for a Dirac cone on the surface of a 3D 

topological insulator 
• Constructing new models for chiral-limit-based perfectly flat bands 
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