I. Review of Fe-based Superconductivity II. Disorder effects in unconventional sc

P. Hirschfeld, U. Florida

H, M.M. Korshunov and I.I. Mazin, Rep. Prog. Phys/74, 124508 (2011

Maglab Theory Winter School January 2013

Collaborators

from U. Florida Dept. of Physics:

Andreas Kreisel

Doug Scalapino UCSB

Thomas Maier ORNL

from rest of world:

Andrey Chubukov UW Madison

Yan Wang

Wenya Rowe Peayush Choubey

Roser Valenti

U. Frankfurt

I. Review: Superconductivity in Fe-based SC

- review of normal state
- review of sc state
- standard model
- new materials & directions

Discovery of LaO_{1-x}F_xFeAs Kamihara et al JACS 2008

Comparison with cuprates

Strong vs. weak coupling?

Single vs. multibands?

2D vs. 3D?

Table 1 Properties of different classes of superconductor											
Property	Conventional superconductors	Copper oxides	MgB2	Iron-based superconductors							
T_{c} (maximum)	<30 K	134 K	39 K	56 K							
Correlation effects	None (nearly-free electrons)	Strong local electronic interaction	None (nearly-free electrons)	Long-range (non-local) magnetic correlations							
Relationship to magnetism	No magnetism	Parent compounds are magnetic insulators	No magnetism	Parent compounds are magnetic metals							
Order parameter	One band, same-sign s wave	One band, sign-changing <i>d</i> wave	Two band, same-sign s wave	Two band, presumably sign- changing s wave							
Pairing interaction	Electron-phonon	Probably magnetic (no consensus)	Electron-phonon	Presumably magnetic							
Dimensionality	Three dimensional	Two dimensional	Three dimensional	Variable							

L-Mazin, Nature 2010

Can we learn what the essential ingredients for high-T_c are from the comparison?

Iron-based superconductors

Recent reviews: G.R. Stewart RMP 2012, Paglione & Greene Nat Phys 2010; Johnston Adv. Phys. 2010

(single xtals)

Chin. Phys. Lett.

(2008)

Electronic structure calculations

LOFP Lebegue 2007 ($T_c = 6K$)

Band structures for 2 materials nearly identical! Hole pocket near Γ , electron pocket near M

Kotliar et al, Cao et al: correlations can be important

Multiorbital physics

DOS near Fermi due almost entirely to 5 Fe d-states

Complications: calculations will be harder

Novelty: surprising new aspects of multiorbital/ multiband physics

Fermi surface

Band structure

Magnetic order in most (not all) parent compounds

de la Cruz et al Nature 453, 899 (2008)

Ordered moment in FeSC

Material	T _S (K)	T _N (Fe) (K)	μ _{Fe} (μ _B)	q _{Fe}	Spin direction	$\begin{array}{c} T_{N}(R) \\ (K) \end{array}$	μ _R (μ _B)	q _R	Spin direction
LaOFeAs	155	137	0.36	101	likely a	-			
CeOFeAs	158	140	0.8	100	а	4.0	0.94	101	a,b,c
PrOFeAs	153	127	0.48	100	а	14	0.84	100	С
NdOFeAs	150	141	0.25	101	likely a	1.96	1.55	100	a,c
CaFe ₂ As ₂	173	173	0.80	101	а	-			
SrFe ₂ As ₂	220	220	0.94	101	а	-			
BaFe ₂ As ₂	142	143	0.87	101	a	-			
Fe _{1.068} Te	67	67	2.25	100	b	-			

"double stripe" $q = (\pi/2, \pi/2)$

Lynn, Dai 2009

Weak coupling/strong coupling picture of magnetism?

Early theories proposing strong coupling: Yildrim 08; Fang et al 08, Cvectovic & Tesanovic 08, Abrahams & Si 08, Manousakis et al 08

Stripe order stabilized for large J₂

Zhao et al. Natphys 09 spin excitations fit Heisenberg without need for Stoner continuum, but a-b anisotropy hard to understand. Diallo et al PRL 09: poor fit at higher E, spin waves are damped by p-h excitations; good fit from 1st principles susceptibility

"Doping" the parent compound

Various chemical substituents or pressure lead to SC "dome"

Alireza *et al.* (2008)

Magnetic order tied to structural phase transition
possible coexistence with superconductivity?

Zhao et al 2008

D.K. Pratt et al 09

Best guess at present: 1111—NO; 122--YES

DFT correctly reproduces (or even predicts) correct magnetic and structural ground states, <u>but</u> requires magnetism as a prior condition for distortion

Courtesy of M. Johannes & I. Mazin

structural $T_s \ge magnetic T_N$

 $Ba(Fe_{1-x}Co_x)_2As_2$

X=0.02

Temperature (K)

Transition driven by orbital ordering?

heory: Xu et al, Kruger et al, Fang et al 08

Experiments on untwinned samples: "nematic" susceptibility above T_s?

Implications for superconductivity?

ARPES: orbital ordering

Yi et al PNAS 2011

Three different types of order which break x/y symmetry

- stripe spin order (neutrons)
- structural order $a_x \neq a_y$ (X-ray diffraction)
- orbital order dxz and dyz orbitals occupied differently (ARPES)

which one is the driving force?

Courtesy of A. Chubukov Controversies in SC state:

k-space structure of gap? origin of pairing

• Hope:

Gap symmetry vs. structure

no nodes

nodes

Nodal excitations dominate low T properties

nodes

Example: T² specific heat from line nodes

Estimate for energy of free Fermi gas:

$$E = \int d\omega \,\omega N(\omega) f(\omega) \simeq N_0 \int d\omega \,\omega f(\omega) \sim \left(\frac{T}{E_F}\right) \quad \cdot \quad T \quad \sim \frac{T^2}{E_F}$$
$$C = \frac{dE}{dT} \sim \frac{T}{E_F}$$

Estimate for energy of d-wave SC:

$$E = \int d\omega \,\omega N(\omega) f(\omega) \simeq N_0 \int d\omega \left(\frac{\omega}{\Delta_0}\right) \omega f(\omega) \sim \left(\frac{T^2}{\Delta_0 E_F}\right) \quad \bullet \quad T \quad \sim \frac{T^2}{E_F}$$
$$C = \frac{dE}{dT} \sim \frac{T^2}{\Delta_0 E_F}$$

SC state: experimental "lack of universality" e.g., penetration depth experiments

Hicks et al 2008 LaFePO $T_c = 6K$

Prozorov, 2011 Co-doped Ba122 $T_c = 25K$

Hashimoto et al 2009 K-doped Ba122 $T_c = 40K$

gapped SC

Thermal conductivity (H=0)

(bulk probe, lowest temperatures thus far)

150

LaFePO: Yamashita et al aXv:0906.0622

K-doped Ba-122: Luo et al aXv:0904.4049

Big linear T term

Tiny or zero linear T term

Recall in theory of nodal SC linear T term \Rightarrow residual qp excitations (metallic-like) for d-wave superconductor this term is "universal" $\kappa/T \sim N_0 v_F^2/\Delta_0$

NMR spin-lattice relaxation

Yashima et al arXiv:0905.1896

$$\frac{T_1^{-1}}{(T_1^{-1})_N} = 2\frac{T}{T_c} \int_0^\infty d\omega \left(\frac{-\partial f}{\partial \omega}\right) \left(\frac{N(\omega)}{N_0}\right)^2$$

Nakai et al. JPSJ (2008)

line nodes $\Rightarrow N(\omega) \sim \omega \Rightarrow T^3$!

Resonant mode in inelastic neutron scattering

Reminder: cuprates: Fong et al PRB 2000

In Ba-122 resonance observed near $Q = \pi$,0 (1-Fe BZ) Appears only in SC state (like opt. doped cuprates)

$$\operatorname{Im} \chi \sim \sum_{k} \left[1 - \frac{\Delta_k \Delta_{k+q}}{E_k E_{k+q}} \right] ..$$

 $\Delta_{k+Q} = -\Delta_k \Rightarrow$ sign change of order parameter

Multiband theory: Maier & Scalapino 2008, Korshunov & Eremin 2008, Maier et al 2009

Ba_{0.6}K_{0.4}Fe₂As₂: Christianson et al Nature 2008

Mystery: ARPES BaFe_{1.85}Co_{0.15}As₂

K. Terashima et.al. PNAS 2009

Many ARPES measurements, almost none find highly anisotropic gap*

* More discussion to come!

ARPES "paradox"

On many samples thermodynamics & transport indicate nodes, whereas ARPES finds isotropic gaps

Possible resolutions:

- electronic structure changes near surfaces, inducing π,π pocket Kemper et al 2010
- intraband scattering from rough surfaces smears out gap anisotropy, "lifts" nodes
- ARPES resolution at electron pockets is poor, averages over angular dependence of β_1 and β_2 pockets

- What is the symmetry of SC order parameter?
- What controls whether Fe-based material is nodal or gapped superconductor?
- Why are these systems' superconducting states nonuniversal?

Pairing by spin fluctuations?

1) Electron-phonon interaction is weak:

We have calculated *ab initio* the electron-phonon spectral function, $\alpha^2 F(\omega)$, and coupling, λ , for the stoichiometric compound [9]. Some moderate coupling exists, mostly to As modes, but the total λ appears to be ~ 0.2, with $\omega_{log} \sim 250$ K, which can in no way explain $T_c \gtrsim 26$ K.

Mazin et al, PRL 2008, see also Mu et al CPL (2008), Boeri et al. PRL 2008

Singh & Du PRL 200

2) Magnetism is usually nearby:

Spin fluctuation theories of pairing

Effective interaction from spin fluctuations (Berk-Schrieffer 1966)

$$V_s(q,\omega) \cong \frac{3}{2} \ \frac{\bar{U}^2 \chi_0(q,\omega)}{1 - \bar{U} \chi_0(q,\omega)}$$

$$\chi_0(q,\omega) = \int \frac{d^3p}{(2\pi)^3} \frac{f(\varepsilon_{p+q}) - f(\varepsilon_p)}{\omega - (\varepsilon_{p+q} - \varepsilon_p) + i\delta}$$

Spin fluctuation theories of pairing

Effective interaction from spin fluctuations (Berk-Schrieffer 1961)

paradigm: d-wave in cuprates from antiferromagnetic spin fluctuations

$$V_s(q,\omega) \cong rac{3}{2} \; rac{ar{U}^2 \chi_0(q,\omega)}{1 - ar{U} \chi_0(q,\omega)}$$

$$\chi_0(q,\omega) = \int \frac{d^3p}{(2\pi)^3} \frac{f(\varepsilon_{p+q}) - f(\varepsilon_p)}{\omega - (\varepsilon_{p+q} - \varepsilon_p) + i\delta}$$

$$\Delta_p = -\sum_{p'} \; rac{V(p-p')\Delta_{p'}}{2E_{p'}}$$

d-wave takes advantage of peak in spin fluct. interaction at π,π !

$$\Delta_{p+(\pi,\pi)} = -\Delta_p$$

remember at least some interactions attractive in order to form Cooper bound state

k-space: Vs(k-k')~V₀+V₂ $\phi_d(k) \phi_d(k')+...$

r-space
bilayer Hubbard model: sign changing s state

N Bulut, D J Scalapino and R T Scalettar Phys. Rev. B 45. 5577 (1992) (QMC)

A. I. Liechtenstein, I.I. Mazin, and O. K. Andersen, Phys. Rev. 74, 7306 (1995) (phenomenology) H. Zhai, F.Wang and D.-H. Lee, Phys. Rev. B 80, 064517(2009) (fRG)

From T.A. Maier, D.J. Scalapino arXiv:1107.0401

Unconventional pairing from multiple Fermi pockets around high symmetry points

D. F. Agterberg , V. Barzykin, L.P. Gor'kov PRB 80, 14868 (1999)

$$\lambda_{\alpha\beta} = \lambda \, \delta_{\alpha\beta} + \mu (1 - \delta_{\alpha\beta})$$

possible singlet BCS solutions:

1D: A_{1g} s-wave 3D: E_{1g} d-wave

"The nontrivial 3D representation is stable if $\lambda - \mu < 0$ and $\mu > 0$, i.e., if the interaction is *attractive* for each pocket alone, while it is *repulsive* between two different pockets."

Unconventional pairing from multiple Fermi pockets around high symmetry points

D. F. Agterberg , V. Barzykin, L.P. Gor'kov PRB 80, 14868 (1999)

Same idea, only in 2D

(nodeless) d-wave

Similar argument from Mazin et al PRL 2008 for pnictides: consider only α - β pair scattering

- nesting peaks interaction V_s at π ,0 in 1-Fe zone.

- interaction is constant over sheet since they are small.
- therefore *isotropic* sign-changing s_{+/-} state solves gap eqn

Spin fluctutation pairing theories in Fe-pnictides

Early electronic structure calculations show λ_{e-oh} weak

Early calculations of spin-fluctuation pairing :

- Kuroki et al PRL 2008
- Cvetkovic et al EPL 2009
- Wen-Lee aXv:0804.1739
- Mazin et al PRL 2008
- Zhang et al PRL 2008
- Wang et al 2008
- Y. Bang et al 2008
- Seo et al PRL 2008
- Graser et al NJP 2009
- Zhang et al PRB 2009
- Ikeda et al PRB 2009

Many others since:

- Maier et al PRB 2009
- Chubukov et al PRB 2009
- Kuroki et al PRB 2009
- Thomale et al PRB 2009
- Thomale et al aXv 2010
- Wang et al aXv 2010
- Graser et al aXv 2010
- Kemper et al aXv 2010
- Ikeda et al PRB 2010

Tight-binding model + interactions investigated by most authors:

$$H = H_0 + H_{int}$$
 $H_0 = 5$ -band tight-binding model

most general 2-body Hamiltonian with intrasite interactions only!

$$H = H_0 + \bar{U} \sum_{i,\ell} n_{i\ell\uparrow} n_{i\ell\downarrow} + \bar{U}' \sum_{i,\ell'<\ell} n_{i\ell} n_{i\ell'} \max_{i\ell'} \max_{i\ell' < \ell} \max_{i \neq \ell} \max$$

Realistic theories: gaps display strong anisotropy/ nodes

What is the origin of the gap anisotropy [Maier et al PRB 09]?

1. importance of orbital character on Fermi sheets

- 2. scattering between β_1 and β_2 sheets
- 3. intraband Coulomb repulsion

See also: Chubukov et al 2009, Thomale et al 2009 (band picture), Thomale et al 2010, Kemper et al 2010

Intra- vs. interorbital pairing: RPA analytical results

$$\Gamma_{ij}(k-k') = \sum_{l_1,l_2,l_3,l_4} a_{\nu_i}^{l_3}(k) a_{\nu_i}^{l_2}(-k) \operatorname{Re}\left[\Gamma_{l_1,l_2,l_3,l_4}(k-k',\omega=0)\right] a_{\nu_j}^{l_1}(k') a_{\nu_j}^{l_4}(-k')$$

$$\begin{array}{ll} \text{intra} & \Gamma_{1111} = \Gamma_{2222} = \frac{3}{4} \left[\frac{(\bar{U} + \bar{J})^2 \chi_0}{1 - (\bar{U} + \bar{J}) \chi_0} + \frac{(\bar{U} - \bar{J})^2 \chi_0}{1 - (\bar{U} - \bar{J}) \chi_0} \right] & \text{Largest-driven by U,J} \\ \\ \text{inter} & \Gamma_{1221} = \Gamma_{2112} = \frac{3}{4} \left[\frac{(\bar{U}' + \bar{J}')^2 \chi_0^{12}}{1 - (\bar{U}' + \bar{J}') \chi_0^{12}} - \frac{(\bar{U}' - \bar{J}')^2 \chi_0^{12}}{1 - (\bar{U}' - \bar{J}') \chi_0^{12}} \right] & \text{U',J' drive instability} \\ \\ \text{mixed} & \Gamma_{1122} = \Gamma_{2211} = \frac{3}{4} \left[\frac{(\bar{U} + \bar{J})^2 \chi_0}{1 - (\bar{U} + \bar{J}) \chi_0} - \frac{(\bar{U} - \bar{J})^2 \chi_0}{1 - (\bar{U} - \bar{J}) \chi_0} \right] & \text{small due} \\ \text{to mat elts.} \end{array}$$

Importance of $\gamma(\pi,\pi)$ pocket

Kuroki et al 2009 found that pocket at (π,π) promotes a nodeless gap

Presence of pocket can be controlled by doping AND by tuning the height of As above the Fe plane

Tendency of hole-doped systems to be more isotropic

"sensitivity" to small changes in electronic structure, disorder

any nodes are *accidental* rather than symmetry-enforced in ext.-s states

a) isotropic $s_{+/-}$

b) nodes

c) deep minima

keep only the leading terms in the series:

$$\psi_n(k) = A_n + B_n \cos 4\psi + C_n \cos 8\psi + ... \Rightarrow A_n$$

 $\psi_{n}(p) = \widetilde{A}_{n} + \widetilde{B}_{n} \cos 4\theta + \widetilde{C}_{n} \cos 8\theta + \dots$ $\pm (\widetilde{D}_{n} \cos 2\theta + \widetilde{E}_{n} \cos 6\theta + \dots) \Longrightarrow \widetilde{A}_{n} \pm \widetilde{D}_{n} \cos 2\theta$

effective interactions:

 $\Gamma_{h,h}(\mathbf{k},\mathbf{p}) = \mathbf{u}_{h,h}, \quad \Gamma_{e,h}(\mathbf{k},\mathbf{p}) = \mathbf{u}_{e,h} \ (1 \pm 2 \ \alpha_{he} \ \cos 2 \ \theta),$ $\Gamma_{e1,e1}(\mathbf{k},\mathbf{p}) = \mathbf{u}_{e,e} \ (1 + 2 \ \alpha_{ee} \ (\cos 2 \ \theta_1 + \cos 2 \ \theta_2) + 4 \ \beta_{ee} \ \cos 2 \ \theta_1 \ \cos 2 \ \theta_2$

 \Rightarrow solve gap equation analytically

fits to RPA

determine direct band interaction coefficients in "harmonic space"

	$u_{h_1h_1}$	$u_{h_2h_2}$	$u_{h_1h_2}$	u_{h_1e}	α_{h_1e}	u_{h_2e}	α_{h_2e}	u_{ee}	α_{ee}	β_{ee}
NSF	0.8	0.76	0.78	0.46	-0.24	0.4	-0.30	0.77	0.14	0.09
\mathbf{SF}	2.27	2.13	2.22	4.65	-0.34	2.29	-0.22	3.67	0.15	0.04

Results of harmonic analysis (2D)

 Generic case: as long as both hole and electron pockets are present, the driving force is electron-hole interaction. Poor nesting suppresses isotropic s+/- away from optimal doping

 for strongly electron doped FeSCs, strong direct d-wave attraction between electron pockets develops
(Graser et al. Wang et al. Das/Balatsky 2011)

• for strongly hole-doped FeSCs, d-wave channel again wins. There is d-wave attraction within hole pocket at (π,π) and strong attraction between the two hole pockets at (0,0), both effects lead to $\lambda_d > 0$

Thomale et al 2011)

Big picture: evolution of gap with doping

PH, Korshunov and Mazin Rep. Prog. Phys. 2011

Different implementations of spin fluctuation theory

Thomale et al 2009

Maier et al 2009

FLEX also similar: Ikeda, Kuroki...

Can charge/orbital fluctuations pair?

Case of attractive interpocket interaction: s_{++} state

Concrete realization: Hubbard-Holstein approach, Kontani-Onari 2010,...

Onari et al 2010

"Strong coupling" theories of SC

e.g. Seo et al 2008, P. Goswami et al (2010): decouple exchange terms in $t-J_1-J_2$ model

Also gives similar results to weak coupling approach, but

- artificially separates itinerant electrons & local moments
- not derivable from Hubbard-type model (t not projected)
- band calculations map onto Heisenberg + biquadratic exchange, ring exchange
- mean field decoupling \Rightarrow nodes fixed in BZ

s₊₊ or s₊₋? Few phase-sensitive expts.

Chen et al, Nature 2010

$NdFeAsO_{0.88}F_{0.12}$

Half-integer fluxes detected (in a small fraction of loops)

Christianson et al Nature 2008

Ba_{0.6}K_{0.4}Fe₂As₂

20

20

10

Energy Transfer [meV]

Enhanced susceptibility at Q below Tc \Rightarrow sign change of order parameter

Hanaguri et al Science 2010

Fe(Se,Te)

Field dependence of quasiparticle interference peaks depends on order parameter sign

Various critiques of all experiments, alternate scenarios: where is the

10

Hiroshi Kontani, M2S 2012

impurity effect in single crystal (Ba,K)Fe₂As₂

J.Li et al. PRB 85, 214509 (2012).

✓ Vegard's law: good crystal

other experiments:

1111 systems: Sato et al, JPSJ('08) Ba122: Paglione et al, arXiv('12) irradiation: Nakajima et al, PRB ('10)

> local impurity on Fe-sites

New directions in FeSC

Three materials which don't quite fit the "standard" paradigm

LiFeAs: stoichiometric 18K superconductor with

clean, nonpolar surfaces nonmagnetic, no FS nesting

KFe_{2-x}Se₂: 31K superconductor with

3μ_B ordered magnetic moment, ordered Fe vacancies, parent compound may be *insulating*

FeSe under stress: 43K SC intercalated with Li amide, ammonia 40K SC under 10 GPa pressure ?? 65K SC single layer on STO Goal: towards materials-specific theory of unconventional SC

• Traditional condensed matter theory prejudice: impossible to calculate T_c from microscopic principles

 Some success within Eliashberg/DFT framework in case of *conventional* electron-phonon superconductors (Cohen, Pickett, Gross...)

• Needed: similar theories for *unconventional* SC

 Use calculations of trends of T_c within families of uSC (e.g. doping sequences, pressure, ...) to identify essential ingredients of high-T_c

Higher Tc Kuroki et al. PRB '09: spin fluctuation theory for 1111 materials

pnictogen height h_{Pn}

Tc, pair structure trends from band structure changes alone

Analogy: T_c of 1-layer cuprates vs. apical oxygen height? (Pavarini et al 2001)

Borisenko et al PRL 2010

Importance of correlations?

 $k_7 = 0$

Yin et al 2011 Nat Mat, Ferber et al PRB 2012

LDA+DMFT: hole pockets shrink, electron pockets unaffected

see also Lee et al, PRL 2012

Comparison of DFT with ARPES derived tight binding fit (in collaboration with Borisenko group, Dresden [unpublished])

ARPES results for SC gap function (Dresden group)

β electron pocket

 γ hole pocket

Borisenko et al Symmetry 2012

Results of 3D spin fluctuation calculations I Leading pairing eigenstate 10-orbital DFT-based bands

λ₁=0.23613,U=0.88,J=0.25U (LiFeAs 10orbDFT)

- Largest, isotropic gap on α pocket $\mathbf V$
- Intermediate size oscillatory γ pocket \checkmark
- Gap minima along Fe-Fe bond [•]
- Intermediate size oscillatory β pocket $\sqrt{}$
- β pocket gaps out of phase X

Results of 3D spin fluctuation calculations II

Leading pairing eigenstate ARPES-derived bands

- Small gap on α pocket X
- Intermediate size oscillatory γ pocket
- Gap minima along Fe-Fe bond
- Intermediate size oscillatory β pocket $\sqrt{}$
- β pocket gaps out of phase

STM quasiparticle interference experiments on high quality LiFeAs surfaces

- Quasiparticle interference measurement
- Find smallest, oscillatory gap with minima along Fe-As bond – γ pocket?
- Find larger, isotropic gap with smaller radius – α2 pocket?
- Apparently do not observe β pockets ?

Rost et al 201

Alkali-intercalated FeSe: "KFe₂Se₂"

ARPES: KFe₂Se₂ strongly e-doped, no h pocket?

. Zhang et al

H. Ding et a

W. Bao et al, CPL 2011; F. Ye et al, PRL 2011: 245 Fe vacancy phase AFM transition: $T_N = 559K$ $M = 3.31 \mu B/Fe$, Q = (4/5, 2/5, 1)

DFT: Yan et al PRB 2011, Cao et al PRL 2011: block AF semiconductor

ordered vacancies, magnetism present in superconducting samples!

What is correct starting point for description of SC phase?

- a) itinerant: Fermi surface w/ no hole pockets as reported by ARPES? Wang et al 2011, Maier et al 2011, Saito et al 2011 ("weak coupling") Yu et al 2011, Fang et al 2011 ("strong coupling")
- b) itinerant: disordered, paramagnetic vacancy phase? Berlijn et al 2012
- c) SC coexistence with ordered vacancy, magnetic phase? Das-Balatsky 2011, Huang-Mou 2012

Evidence for inhomogeneity in all samples:

W. Li et al., Nat. Phys. (2011)

Region I: no Fe vacancies (Superconducting) Region II: ordered Fe vacancies (Insulating)

W. Li et al., Nat. Phys. (2011) Region I: no Fe vacancies Region II: ordered Fe vacancies

Maier et al PRB 2011 "nodeless" d-wave state for KFe₂Se₂ Similar: F. Wang et al 2011, Das and Balatsky 2011

• Ingredients:

DFT calculation for KFe2Se2 5-orbital tight-binding fit Adjustment of hoppings to suppress hole pockets "Standard" spin fluctuation calculation

e-e scattering maximized by opposite sign $v_{\text{F}}{}^{\prime}\text{s}$

Anisotropic but nodeless d-wave

Prediction of neutron scattering resonance near $q = (\pi, 0.6\pi)$

Maier et al PRB 2011

Re $\chi(q,\omega)$

Evidence for fully gapped SC state

Spin-lattice T₁ ⁷⁷K Ma et al 2011

ARPES
Park et al PRL 2011

Maier et al prediction

Evidence for sign change of SC gap

d-wave gap nodes & 122 symmetry

Figure 26. A cartoon showing a folded 3D Fermi surface for an AFe₂Se₂ material, assuming a finite ellipticity, but zero k_z dispersion. Different colors show the signs of the order parameter in a *d*-wave state. Wherever the two colors meet, turning on hybridization due to the Se potential creates nodes in the order parameter.

At best d-wave can be "quasinodeless": nodes are weighted by strength of hybridization

some alternatives

s++ with orbital fluctuations: Saito et al 2011

Khodas Chubukov 2012

Theory of pairing of electrons on β pockets including interband pairing

Our tentative conclusion: hybridization probably too weak to access s+id, s phases. System remains in d-wave state with quasinodes

10-orbital 3D DFT-based spin fluctuation calculations

Orbital content

So far:

d-wave always wins
vertical or loop nodes depending on doping

outer inner $\frac{1}{1000}$

d $\lambda = 0.73$

-0.4

0.6

0.8

d $\lambda = 0.15$

s $\lambda = 0.04$

Problem with d-wave scenario: ARPES on Z-centered pocket Xu et al 2012

If correct rules out d-wave!

Effect of Fe vacancies?

Han et al 2011: possibility that SC takes place in state with *disordered* vacancies?

W. Bao et al, CPL 2011

Lin et al, PRL 2011

Fermi surface of paramagnetic vacancy $\sqrt{5x}\sqrt{5}$ block state in 1-Fe zone But: ARPES sees no reconstruction of bands

Effect of Fe vacancies?

Berlijn et al 2012: average over 20 vacancy disorder configurations within effective Hamiltonian method Berlijn et al PRL 2011

Fermi surface

Effective doping: hole pocket shifted below Fermi level

Similar to Mou et al

disorder

Conclusions

- Magnetic and orbital correlations at high T lead to stripe magnetic order and superconductivity: which are more important?
- repulsive interactions probably lead to s+/- state for "generic" Fe-based SC with hole and electron pockets
- orbital character, intraband Coulomb enhance gap anisotropy. anisotropic s_{+/-} nodal structures show strong sensitivity to small changes in electronic structure (pnictogen height, surfaces, strain, defects)
- spin fluctuation theory explains gap anisotropy of 122's across phase diagram, gets details correct in "generic" FeSC

"end point compounds" show tendency to d-wave order