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Helium-4 is a Quantum Liquid
Superfluid is a 
fundamentally 
quantum state of 
matter

P. Kapitsa; J. Allen and A.D. Misener (1938)

•dissipationless flow 
•quantized vortices 
•non-entropic flow

0 1 2 3 4 6
0

5

10

15

20

25

30

35

40

5
Temperature (K)

Pr
es

su
re

 (M
Pa

)

liquid

superfluid

solid

gasT!

P. Kapitsa; J. Allen and A.D. Misener (1938)



What Makes 4He so Quantum?
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Helium-4 is the only 
atomic bosonic 
system with  λdB ∼ rs  
at T ~ O(1 K) 



Superfluid 4He is a 
macroscopic quantum 

phase of matter!

Can we simulate it 
efficiently on a 
classical computer?



Quantum Liquids 
• General formulation of itinerant particles with 

strong interactions 
• Trial wavefunctions 
• Variational Monte Carlo

Ground State Quantum Monte Carlo 
• Introduction to projector methods 
• Elimination of systematic bias from a trial wavefunction 
• Imaginary time propagator in the position representation 
• Estimators

Some results for helium 
• PIGS for the energy and structural properties 



A General Description
N interacting particles in the spatial continuum

interaction 
potential

external 
potential

(a) (b) (c)

trapped neutral atoms 
in a periodic lattice

confined high-
density superfluids

quasi-1d Bose 
gases
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Measurement of Observables
We are interested in measuring the expectation value of some 
operator corresponding to an observable

Ground State:
⌦
Ô
↵
=
h�0|Ô|�0i
h�0|�0i

Ĥ |�0i = E0 |�0i

Finite Temperature:
⌦
Ô
↵
=
Tr Ôe��Ĥ

Tr e��Ĥ
� =

1

kBT

Z partition function



1. Construct a trial N-particle wavefunction which 
depends on Q variational parameters

Variational Monte Carlo I
Can get an upper bound on the ground state energy by  
guessing a trial wavefunction with non-zero overlap with Ψ0

��
T (R) � = {�1, . . .�Q} R = {r1, . . . , rN}

3. Vary the parameters α until a minimum is identified

2. Evaluate the expectation value of the energy

E =

¨
��
T

���Ĥ
�����

T

∂

⌦
��
T

����
T
↵ � E0

high dimensional 
integrals



Variational Monte Carlo II
The trial wavefunction is usually small in large regions of 
configuration space.  Can use Metropolis method to efficiently 
sample only those regions where the wavefunction is large. 

Local Energy:
only need to know the 
action of H on the trial 
wavefunction (assume real)

E�L (R) =
Ĥ��

T (R)

��
T (R)

Z
DR ⌘

NY

�=1

Z
ddr�E =

R
DR��

T (R) Ĥ��
T (R)R

DR [��
T (R)]

2

=

R
DR
î
��
T (R)
ó2
E�L (R)R

DR [��
T (R)]

2

stationary distribution: ��(R) =

î
��
T (R)
ó2

R
DR
⇥
��
T (R)
⇤2

=
Z

DR��(R)E�L (R)



Variational Monte Carlo III
Example: 1d simple harmonic oscillator Ĥ = �

1
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Variational Monte Carlo IV
Trivial to code but efficiency strongly depends on the choice of 
trial wavefunction

initialize walkers at random positions 

for 1…number_MC_steps 

for 1…number_walkers 

select walker and update position R → R’ 

compute  

accept new walker with probability min(1,p) 

measure observables

p =
î
��
T (R
0)/��

T (R)
ó2

https://github.com/agdelma/qmc_ho



Variational Monte Carlo V
Systematic errors due to the choice of trial wavefunction

|�T i = � |�0i + |��i h�0|��i = 0suppose with

O� =
h�T |Ô|�T i
h�T |�T i

=
(�� h�0| + h��|)Ô(� |�0i + |��i)

|�|2 + h��|��i

=
|�|2O0 + �� h��|Ô|�0i + h.c.

|�|2 + h��|��i

⇡ O0 +
2

�
h��|Ô|�0i

(dropping α dependence)

[Ô, Ĥ] 6= 0dominates when



Ground State Quantum Monte Carlo 
• Introduction to projector methods 
• Elimination of systematic bias from a trial wavefunction 
• Imaginary time propagator in the position representation 
• Estimators

Some results for helium 
• PIGS for the energy and structural properties 

Quantum Liquids 
• General formulation of itinerant particles with 

strong interactions 
• Trial wavefunctions 
• Variational Monte Carlo



General Monte Carlo Formalism
Any Monte Carlo method, classical or quantum, can be 
constructed by answering 4 basic questions:

1 Description: What are the degrees of freedom and 
energetics that control them?

2 Configurations: How can these degrees of freedom be 
encoded efficiently on a computer?

3 Observables: How can the expectation value of 
operators be measured for the 
configurations?

4 Updates: How can we sample all possible 
configurations and what is their 
likelihood?



Path Integral Ground State QMC
Description
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N interacting particles in d-dimensions

Configurations



Projecting out the Ground State
Expand the trial wavefunction in the energy eigenstate basis

|�T i =
�X

j=0
cj
���j
↵

where Ĥ
���j
↵
= Ej
���j
↵

apply the imaginary time evolution operator for time τ

|��i ⌘ e��Ĥ |�T i =
�X

n=0

�
��Ĥ
�n

n!

�X

j=0
cj
���j
↵
=

�X

n=0

�X

j=0

�
��Ej
�n

n!
cj
���j
↵

=
�X

j=0
e��Ejcj
���j
↵

exponentially  
damped for Ej > E0

lim
�!� |��i � |�0i

= e��E0

2
4c0 |�0i +

�X

j=1
e��(Ej�E0)cj
���j
↵
3
5



Elimination of Systematic Bias
For large enough τ we can reduce any systematic bias 
originating from the trial wavefunction

O� =
h�� |Ô|��i
h�� |��i

'
h�0|Ô|�0i
h�0|�0i

�� 1for

practically we can perform a calculation for different values of 
τ and try to extrapolate the result. Expect exponential 
convergence for the energy.

τ

E



Position Basis
Evaluation of expectation values will employ first quantization 
in the position representation.

|Ri = |r1, . . . , rNi
rjrjrjr

�(R;�) = hR|e��Ĥ|�T i

=
Z

DR0
⌦
R
��e��Ĥ
��R0
↵ ⌦
R0
���T
↵

=
Z

DR0G(R,R0;�)�T (R0)

�T (R) = hR|�T i

Z
DR |Ri hR| = 1̂

completeness}
propagator /  
Green function

Z
DR ⌘

NY

�=1

Z
ddr�



Expectation Values I
Use the completeness relation to write expectation values in 
the position basis

O� =
h�� |Ô|��i
h�� |��i

define: Z(�) ⌘ h�� |��i

Z(�) = h�T |e��Ĥe��Ĥ|�T i

=
Z
DR
Z
DR0
Z
DR00 h�T |Ri
⌦
R
��e��Ĥ
��R0
↵ ⌦
R0
��e��Ĥ
��R00
↵ ⌦
R00
���T
↵

Z
DR |Ri hR| = 1̂

=
Z
DR
Z
DR0
Z
DR00�T(R)G(R,R0;�)G(R0,R00;�)�T(R00)



The Propagator I
Let’s investigate the  imaginary time propagator

G(R,R0;�) =
⌦
R
��e��Ĥ
��R0
↵

propagator:

Hamiltonian: Ĥ = �
NX

�=1

�2

2m�
�̂
2
� +

NX

�=1
V̂� +
X

�<j
Û�j} }

T̂ V̂+
commutator: [ T̂, V̂] 6= 0 ) e��Ĥ 6= e��T̂e��V̂



The Propagator II
The imaginary time propagator can be factored using the 
Campbell-Baker-Hausdorff formula

commutator: [ T̂, V̂] 6= 0 ) e��Ĥ 6= e��T̂e��V̂

= e��T̂e��V̂ + O(�2)

CBHe��(T̂+V̂) = e��T̂e��V̂e
�2
2 [ T̂,V̂]+ ···

problems: 1. we only recover an exact representation 
of the wavefunction when τ ≫ 1 

2. the correction term could diverge for 
some interesting potentials, e.g.             
δ-interactions



The Propagator III
The Hamiltonian commutes with itself [Ĥ, Ĥ] = 0

e��Ĥ = e�
�
2 Ĥe�

�
2 Ĥ

in the position representation

G(R,R0;�) =
⌦
R
��e��Ĥ
��R0
↵
=
⌦
R
��e�

�
2 Ĥe�

�
2 Ĥ
��R0
↵

=
Z
DR00
⌦
R
��e�

�
2 Ĥ
��R00
↵ ⌦
R00
��e�

�
2 Ĥ
��R0
↵

=
Z
DR00G
Å
R,R00;

�

2

ã
G
Å
R00,R0;

�

2

ã

τ/2 < τ



Repeat this procedure M times where 

The Propagator IV
M 2 Z and M� 1

e�Ĥ =
⇣
e�

�
M Ĥ
⌘M
=
Ä
e���Ĥ
äM

�� ⌘
�

M
Δτ can be made 
arbitrarily small

using this in our propagator:

G(R0,RM;�) =
Z
DR1 · · ·
Z
DRM�1G(R0,R1;��) · · ·G(RM�1,RM;��)

|R�i ⌘ |r1�, . . . , rN�i particle positions on an 
imaginary time slice

G can be written as a path integral describing imaginary 
time propagation over M  discrete time slices between fixed 
initial and final states



Δτ

{G(R4,R5,��)

Visualizing for N = 6, M = 8 in one spatial dimension:

The Propagator V

G(R0,RM;�) =
Z
DR1 · · ·
Z
DRM�1G(R0,R1;��) · · ·G(RM�1,RM;��)

τ

�T(R0)

�(RM,�) ⇡ �0(RM)

r1,0 r2,0 r3,0 r4,0 r5,0 r6,0

r1,8 r2,8 r3,8 r4,8 r5,8 r6,8

fixed

fixed



Expectation Values II
Using this expression in our expectation value:

O� =
h�� |Ô|��i
h�� |��i

Z(�) ⌘ h�� |��i

Z(�) = h�T |e��Ĥe��Ĥ|�T i

=
Z
DR0

Z
DRM

Z
DR2M �T (R0)G(R0,RM;�)G(RM,R2M;�)�T (R2M)

G(R0,RM;�) =
Z
DR1 · · ·
Z
DRM�1G(R0,R1;��) · · ·G(RM�1,RM;��)

G(RM,R2M;�) =
Z
DR1 · · ·
Z
DRM�1G(RM,RM+1;��) · · ·G(R2M�1,R2M;��)

=
2MY

�=0

Z
DR��T (R0)

2
4
2M�1Y

�=0
G(R�,R�+1;��)

3
5�T (R2M)



�T (RM) ⇡ �0(RM)

&$

2M + 1 total 
imaginary 
time slices

central slice is a 
representation 
of the ground 
state 
wavefunction

Expectation Values III
Visualizing the normalization inner product for N = 6, M = 8:

Z(�) =
2MY

�=0

Z
DR��T(R0)

2
4
2M�1Y

�=0
G(R�,R�+1;��)

3
5�T(R2M)

2$

�T(R0)

�T(R2M)



Path Integral Ground State QMC
Description

Ĥ = �
NX

�=1

�2

2m�
�̂
2
� +

NX

�=1
V̂� +
X

�<j
Û�j

N interacting particles in d-dimensions

Configurations
projecting a trial wavefunction to the  
ground state |�0i = lim

�!�e��Ĥ |�T i
gives discrete imaginary time worldlines 
constructed from products of the short 
time propagator G(R,R0;��) =

⌦
R
��e���Ĥ
��R0
↵

�T(R0)

�T(R2M)

��

�0(RM)$

L



Expectation Values IV
Can perform a similar procedure for the numerator:

O� =
h�� |Ô|��i
h�� |��i

Z(�) ⌘ h�� |��i

h�� |Ô|��i = h�T |e��ĤÔe��Ĥ|�T i
Z

DR |Ri hR| = 1̂

}O(RM,RM0)

estimator in position 
representation

=
Z
DR0

Z
DRM

Z
DRM0

Z
DR2M0�T (R0)G(R0,RM;�) hRM|Ô|RM0 iG(RM0 ,R2M;�)�T(R2M0)

=
MY

�=0

Z
DR� �T (R0)

2
4
2M�1Y

�=0
G(R�,R�+1;��)

3
5

⇥
2M0Y

�=M0

Z
DR� O(RM,RM0)

2
4
2M0�1Y

�=M0
G(R�,R�+1;��)

3
5�T(R2M0)



Expectation Values V
Things simplify for any operator that is diagonal in the 
position representation

O� =
h�� |Ô|��i
h�� |��i

⌦
R
��Ô
��R0
↵
= O(R)�
�
R � R0
�

O� =
1

Z(�)

2MY

�=0

Z
DR� O(RM) �T (R0)

2
4
2M�1Y

�=0
G(R�,R�+1;��)

3
5�T (R2M)

a high dimensional integral that can be sampled with 
Metropolis Monte Carlo



Energy Expectation Value
For off-diagonal estimators (e.g. Energy) we can utilize operator 
relations 

E� =
h�� |Ĥ|��i
h�� |��i

=
1

Z(�)
h�T |e��ĤĤe��Ĥ|�T i

�Z(�)

�(2�)
= � h�T |Ĥe�2�Ĥ|�T i= � h�T |e��ĤĤe��Ĥ|�T i

Z(�) = h�T |e�2�Ĥ|�T i consider the derivative

) E� = �
1

Z(�)

�Z(�)

�(2�)
we will return to an explicit 
expression for this later



Path Integral Ground State QMC
Description

Ĥ = �
NX

�=1

�2

2m�
�̂
2
� +

NX

�=1
V̂� +
X

�<j
Û�j

N interacting particles in d-dimensions

Configurations
projecting a trial wavefunction to the  
ground state |�0i = lim

�!�e��Ĥ |�T i
gives discrete imaginary time worldlines 
constructed from products of the short 
time propagator G(R,R0;��) =

⌦
R
��e���Ĥ
��R0
↵

�T(R0)

�T(R2M)

��

�0(RM)$

L

Observables
exact method for computing ground 
state expectation values 

O� =
h�T |e��ĤÔe��Ĥ|�T i
h�T |e�2�Ĥ|�T i

Updates



Short Time Propagator I
To determine the statistical weights of our configurations we 
need to derive a useful expression for the short time propagator

G(R,R0;��) =
⌦
R
��e���Ĥ
��R0
↵

returning to the Campbell-Baker-Hausdorff formula

e���Ĥ = e���T̂e���V̂ + O
�
��2
�

can make this error arbitrarily small  
at the cost of more time slices

we can do slightly better for free by splitting the Hamiltonian 
into two pieces and reversing the operator order:

e���Ĥ = e�
��
2 V̂e���T̂e�

��
2 V̂ + O
�
��3
�



Short Time Propagator II
Primitive Approximation: e���Ĥ = e�

��
2 V̂e���T̂e�

��
2 V̂ + O
�
��3
�

There are many clever Trotter decompositions that allow us to 
get to higher order, see, eg:

• S. A. Chin, Phys. Lett. A 226, 344 (1997) 
• S. A. Chin, Phys. Rev. A 42, 6991 (1990) 
• S. Jang, S. Jang, and G. A. Voth, J. Chem. Phys. 115, 7832 (2001) 
• R. E. Zillich, J. M. Mayrhofer, and S. A. Chin, J. Chem. Phys. 132, 

044103 (2010)

but there is no free lunch.  Correction terms can be difficult to 
calculate and involve high order derivatives of the potential, 
which might not be smooth!
In this case use the pair product approximation

D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)



Short Time Propagator III
G(R�,R�+1;��) = hR� |e���Ĥ|R�+1i

= hR� |e�
��
2 V̂e���T̂e�

��
2 V̂ |R�+1i + O

�
��3
�

'
Z
DR
Z
DR0 hR� |e�

��
2 V̂ |Ri
⌦
R
��e���T̂
��R0
↵ ⌦
R0
��e�

��
2 V̂ ��R�+1
↵

diagonal in position basis

' e� ��
2 V(R�) hR� |e���T̂ |R�+1ie�

��
2 V(R�+1)}

G0(R�,R�+1;��)
free / bare  
propagator

G(R�,R�+1;��) = e�
��
2 V(R�)e�

��
2 V(R�+1)G0(R�,R�+1;��) + O

�
��3
�

'
Z
DR
Z
DR0e�

��
2 V(R�)�(R� � R)

⌦
R
��e���T̂
��R0
↵
e�

��
2 V(R�+1)�
�
R0 � R�+1
�

V(R�) ⌘
NX

�=1
V(r �,�) +

1

2

X

�,j
U(r �,� � r j,�)



Free Propagator I
G0(R�,R�+1;��) = hR� |e���T̂ |R�+1i

Write the position state in terms of plane waves:

|Ri = |r1, . . . , rNi

=
NY

�=1

Z ddk�
(2�)d

e�k � ·r � |k1, . . . ,kNi .

To simplify notation, it is conventional to define: �� =
�2

2m�

T̂ = �
NX

�=1
���̂

2
�



Free Propagator II
G0(R�,R�+1;��) = hR� |e���T̂ |R�+1i

⌦
R
��e���T̂
��R0
↵
=

NY

�=1

Z ddk�
(2�)d

Z ddk0�
(2�)d

e� �k � ·r �e�k
0
� ·r
0
�
¨
k1, . . . ,kN

���e���
PN

j=1 �j�̂
2
j
���k01, . . . ,k

0
N

∂

=
NY

�=1

Z ddk�
(2�)d

Z ddk0�
(2�)d

exp
Å
�����
���k0�
���
2
� �k � · r � + �k0� · r

0
�

ã¨
k1, . . . ,kN

���k01, . . . ,k
0
N

∂

=
NY

�=1

Z ddk�
(2�)d

exp
î
�����|k �|2 + �k � · (r0� � r �)

ó

=
NY

�=1
(4�����)�d/2 exp

2
64�

NX

�=1

���r � � r0�
���
2

4����

3
75

=
NY

�=1

Z ddk�
(2�)d

Z ddk0�
(2�)d

exp
Å
�����
���k0�
���
2
� �k � · r � + �k0� · r

0
�

ã
(2�)d�
Ä
k � � k0�
ä

product of Gaussians ⇒  

can be exactly sampled!



Short Time Propagator IV

G(R�,R�+1;��) = e�
��
2 V(R�)e�

��
2 V(R�+1)G0(R�,R�+1;��) + O

�
��3
�

Putting everything together:

work at fixed error

0

simplify to identical particles: λi → λ =  ħ2/2m

G0(R�,R�+1;��) = (4����)�dN/2e�
1

4��� |R��R�+1 |2

|R� � R�+1|2 ⌘
NX

�=1

��r�,� � r�,�+1
��2

G(R�,R�+1;��) = (4����)�dN/2e�
1

4��� |R��R�+1 |2� ��
2 [V(R�)+V(R�+1)]

can define a link action: S(R�,R�+1;��) = � ln [G(R�,R�+1;��)]



Configuration Weights
Recall the normalization factor:

Z(�) = h�T |e��Ĥe��Ĥ|�T i

= (4���)�NMd
2MY

�=0

Z
DR��T (R0)e

�
P2M�1

�=0
|R�+1�R� |

4��� ���
î
1
2V(R0)+ 1

2V(R2M)+
P2M�1

�=1 V(R�)
ó
�T (R2M)

= (4���)�NMd
2MY

�=0

Z
DR� e�S̃

S̃ =
2M�1X

�=0

|R�+1 � R� |
4���

+ ��

2
41
2
V(R0) +

1

2
V(R2M) +

2M�1X

�=1
V(R�)

3
5� ln [�T (R0)] � ln [�T (R2M)]

=
2MY

�=0

Z
DR��T (R0)

2
4
2M�1Y

�=0
G(R�,R�+1;��)

3
5�T (R2M)

G(R�,R�+1;��) =
e�

1
4��� |R��R�+1 |2� ��

2 [V(R�)+V(R�+1)]

(4����)�dN/2



Importance Sampling
Z(τ) is a high (N • M • d) dimensional integral that can be 
sampled with Monte Carlo

X = {R�, . . .R2M}configuration:
Z
dX =

2MY

�=0

Z
DR�

probability  
distribution: �(X) = e�S̃(�)�NMd ln(4����)

p(X) =
�(X)
R
dX0 �(X0)

probability  
density:

expectation  
value:
⌦
Ô
↵
=
Z
dX�Ô(X)p(X)

operator dependent 
weight function



Configurations are not uniformly 
likely but are instead given by the 

probability p(X)

The path integral ground state (PIGS) 
algorithm will allow us to generate 
configurations X according to p(X) and to use 
these configurations to accumulate the 
weight functions wO(X) for any observable.



Updates
Need to construct a series of updates that efficiently sample 
configuration space

single-bead (local) updates:
Metropolis sampling of both 
the kinetic and potential 
action

multiple-bead (non-local) 
updates: can sample the free 
propagator exactly and use 
Metropolis sampling for the 
potential action.



Single Bead Displace
Select a bead at random and shift its position by δ
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Multi Bead Staging I
Select a worldline j and slice γ at random and generate a new 
section of path of length m
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choose a single slice, ν, in this product and 
construct the probability distribution for 
propagation to that position, constrained 
by the fixed endpointsν
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Gaussian random numbers!



Multi Bead Staging II
Select a worldline j and slice ' at random and generate a new 
section of path of length m

�T(R9)

�T(R0)

j = 3, ' = 2, m = 5 
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Path Integral Ground State QMC
Description

Ĥ = �
NX

�=1

�2

2m�
�̂
2
� +
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�=1
V̂� +
X

�<j
Û�j

N interacting particles in d-dimensions

Configurations
projecting a trial wavefunction to the  
ground state |�0i = lim

�!�e��Ĥ |�T i
gives discrete imaginary time worldlines 
constructed from products of the short 
time propagator G(R,R0;��) =

⌦
R
��e���Ĥ
��R0
↵

�T(R0)
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Observables
exact method for computing ground 
state expectation values 
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h�T |e��ĤÔe��Ĥ|�T i
h�T |e�2�Ĥ|�T i

Updates
Local and non-local bead 
updates with weights given  
by )(X)

Path Integral Ground State QMC



Energy Estimator
Now that we have a closed expression for Z(τ) we can directly 
compute an estimator for the energy 
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Path Integral Ground State QMC
We are ready to code it up!

initialize all beads at random positions 

for 1…number_MC_steps 

for 1…N 

for 0…2M 

    perform a single slice displacement 

for 0..2M/m 

    perform a staging update 

    measure observables

https://github.com/agdelma/qmc_ho



Some results for helium 
• PIGS for the energy and structural properties 

Quantum Liquids 
• General formulation of itinerant particles with 

strong interactions 
• Trial wavefunctions 
• Variational Monte Carlo

Ground State Quantum Monte Carlo 
• Introduction to projector methods 
• Elimination of systematic bias from a trial wavefunction 
• Imaginary time propagator in the position representation 
• Estimators
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In principle, in order to estimate K! one ought to obtain
estimates of K!!" for a number of significantly different val-
ues of !, and extrapolate the value of K! by fitting the data
using Eq. !16". However, while this cumbersome procedure
is inevitable if one uses the PA, given the slow convergence
of the estimates, Fig. 1 clearly shows that values of K!!"
obtained with the FOP are indistinguishable, within statisti-
cal uncertainties, for !"!!#0.005 K−1. The same analysis
can be carried out for other quantities, such as the potential
and the total energy per particle; in all of these cases, we
found the expected quartic behavior of the estimates as a
function of !, with the same value of !!, namely 0.005 K−1,
below which estimates no longer change, within statistical
uncertainties.

This value of time step is a little over a factor of 2
smaller than that !0.0125 K−1" used in PIGS calculations for
4He based on the PPA.2 In other words, even though the PPA
allows one to observe convergence of the estimates with a
greater time step !and therefore fewer slices", the improve-
ment afforded by the use of the PPA over the FOP, in the
context of PIGS calculations for condensed 4He, is not nearly
as large as that observed in finite temperature calculations,
where the PPA can reduce the number of time slices needed
to achieve convergence at low temperature !T"2 K", with
respect to the PA, by as much as a factor of 50 or greater !see
Ref. 1". In our view, given the computing facilities com-
monly available nowadays, the significant computational
simplification arising from the use of the FOP more than
compensates for the factor of 2 more imaginary time slices
needed, with respect to calculations based on the PPA.24

Finally, we note that the optimal value !!, found here for
the time step, is as much as ten times greater than that re-
quired in DMC calculations based on the PA.25,26 It is also
approximately five times greater than that used in reptation
quantum Monte Carlo.20 Although we are comparing here
calculations using slightly different versions of the Aziz po-
tential, the optimal value of the time step needed is largely
insensitive to the fine details of the interaction.

B. Projection time !

Figure 2 shows our PIGS energy estimates for different
values of ! at the equilibrium density, for a projection time
#=0.25 K−1. The extrapolated e!$e!!=0" value is e!

=−7.123±0.003 K, which is in perfect agreement with the
most recent DMC result25 based on the same !Aziz-I" poten-
tial. This suggests that, although PIGS estimates for the total
energy are strictly variational, a projection time #
=0.25 K−1 is sufficiently long to obtain accurate ground state
results, at least at this density and with the trial wave func-
tion utilized.

In order to establish this conclusion more quantitatively,
we computed the energy expectation value e!# ,!" for differ-
ent projection times # !specifically, 0.0625 K−1"#
"0.5 K−1", with a fixed value of the time step !=3.125
$10−3 K−1. These results are shown in Fig. 3.

It is simple to show27 that, in the limit #→%, the true
ground state expectation value must be approached exponen-
tially, i.e., e!#"%e!+b exp!−c#", where c is essentially the

energy gap between the ground state and the first excited
state. This simple expression provides an excellent fit to our
energy estimates e!# ,!", as shown in Fig. 3. Similar results
are obtained for the kinetic and potential energy, confirming
that a projection time #&0.25 K−1 is sufficiently long to
extract accurate energetics, at least at the equilibrium density
and with the trial wave function utilized.

The behavior of structural quantities !such as the pair
correlation function" vis-a-vis the time step ! and the projec-
tion time # is more difficult to assess quantitatively. In gen-
eral, within our statistical uncertainties our results for g!r" do
not change for #&0.125 K−1, i.e., the projection time re-
quired to observe convergence of g!r" is about half of that
needed for the energy. Moreover, although we did not pursue
this aspect quantitatively, our observation is that a greater
value of the time step can be used, in order to obtain accurate
estimates of g!r", than that needed for the energy. In other

FIG. 2. Total energy per 4He atom e!!" !in K" vs time step ! !in K−1". The
total projection time is #=0.25 K−1. These calculations were carried out
using the Aziz-I potential !Ref. 17", at the equilibrium density 'e
=0.021 86 Å−3, with 256 particles. Dashed line is a quartic fit to the PIGS
data. The extrapolated value of the total energy per particle is
−7.123±0.003 K.

FIG. 3. Total energy per 4He atom e!# ,!" !in K" vs imaginary projection
time # !in K−1". The time step used in all calculations is !=3.125
$10−3 K−1. These calculations were carried out using the Aziz-I potential
!Ref. 17", at the equilibrium density 'e=0.021 86 Å−3, with 256 particles.
Dashed line is a fit to the PIGS data based on the expression e!#"=a
+b exp!−c#".
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Ground State Energy of 4He

In principle, in order to estimate K! one ought to obtain
estimates of K!!" for a number of significantly different val-
ues of !, and extrapolate the value of K! by fitting the data
using Eq. !16". However, while this cumbersome procedure
is inevitable if one uses the PA, given the slow convergence
of the estimates, Fig. 1 clearly shows that values of K!!"
obtained with the FOP are indistinguishable, within statisti-
cal uncertainties, for !"!!#0.005 K−1. The same analysis
can be carried out for other quantities, such as the potential
and the total energy per particle; in all of these cases, we
found the expected quartic behavior of the estimates as a
function of !, with the same value of !!, namely 0.005 K−1,
below which estimates no longer change, within statistical
uncertainties.

This value of time step is a little over a factor of 2
smaller than that !0.0125 K−1" used in PIGS calculations for
4He based on the PPA.2 In other words, even though the PPA
allows one to observe convergence of the estimates with a
greater time step !and therefore fewer slices", the improve-
ment afforded by the use of the PPA over the FOP, in the
context of PIGS calculations for condensed 4He, is not nearly
as large as that observed in finite temperature calculations,
where the PPA can reduce the number of time slices needed
to achieve convergence at low temperature !T"2 K", with
respect to the PA, by as much as a factor of 50 or greater !see
Ref. 1". In our view, given the computing facilities com-
monly available nowadays, the significant computational
simplification arising from the use of the FOP more than
compensates for the factor of 2 more imaginary time slices
needed, with respect to calculations based on the PPA.24

Finally, we note that the optimal value !!, found here for
the time step, is as much as ten times greater than that re-
quired in DMC calculations based on the PA.25,26 It is also
approximately five times greater than that used in reptation
quantum Monte Carlo.20 Although we are comparing here
calculations using slightly different versions of the Aziz po-
tential, the optimal value of the time step needed is largely
insensitive to the fine details of the interaction.

B. Projection time !

Figure 2 shows our PIGS energy estimates for different
values of ! at the equilibrium density, for a projection time
#=0.25 K−1. The extrapolated e!$e!!=0" value is e!

=−7.123±0.003 K, which is in perfect agreement with the
most recent DMC result25 based on the same !Aziz-I" poten-
tial. This suggests that, although PIGS estimates for the total
energy are strictly variational, a projection time #
=0.25 K−1 is sufficiently long to obtain accurate ground state
results, at least at this density and with the trial wave func-
tion utilized.

In order to establish this conclusion more quantitatively,
we computed the energy expectation value e!# ,!" for differ-
ent projection times # !specifically, 0.0625 K−1"#
"0.5 K−1", with a fixed value of the time step !=3.125
$10−3 K−1. These results are shown in Fig. 3.

It is simple to show27 that, in the limit #→%, the true
ground state expectation value must be approached exponen-
tially, i.e., e!#"%e!+b exp!−c#", where c is essentially the

energy gap between the ground state and the first excited
state. This simple expression provides an excellent fit to our
energy estimates e!# ,!", as shown in Fig. 3. Similar results
are obtained for the kinetic and potential energy, confirming
that a projection time #&0.25 K−1 is sufficiently long to
extract accurate energetics, at least at the equilibrium density
and with the trial wave function utilized.

The behavior of structural quantities !such as the pair
correlation function" vis-a-vis the time step ! and the projec-
tion time # is more difficult to assess quantitatively. In gen-
eral, within our statistical uncertainties our results for g!r" do
not change for #&0.125 K−1, i.e., the projection time re-
quired to observe convergence of g!r" is about half of that
needed for the energy. Moreover, although we did not pursue
this aspect quantitatively, our observation is that a greater
value of the time step can be used, in order to obtain accurate
estimates of g!r", than that needed for the energy. In other

FIG. 2. Total energy per 4He atom e!!" !in K" vs time step ! !in K−1". The
total projection time is #=0.25 K−1. These calculations were carried out
using the Aziz-I potential !Ref. 17", at the equilibrium density 'e
=0.021 86 Å−3, with 256 particles. Dashed line is a quartic fit to the PIGS
data. The extrapolated value of the total energy per particle is
−7.123±0.003 K.

FIG. 3. Total energy per 4He atom e!# ,!" !in K" vs imaginary projection
time # !in K−1". The time step used in all calculations is !=3.125
$10−3 K−1. These calculations were carried out using the Aziz-I potential
!Ref. 17", at the equilibrium density 'e=0.021 86 Å−3, with 256 particles.
Dashed line is a fit to the PIGS data based on the expression e!#"=a
+b exp!−c#".
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might expect the limited projection time of a PIGS calcula-
tion to put it at a disadvantage with respect to DMC, particu-
larly when the trial wave function does not capture the phys-
ics of the ground state !e.g., above the freezing density". Our
results point instead to a greater robustness of PIGS, com-
pared to DMC. It is not immediately obvious what the reason
for the discrepancy between PIGS and DMC energy esti-
mates might be. Both calculations were performed for sys-
tems of relatively large size, i.e., finite-size corrections are
expected to be much smaller than the differences in energy
seen here. Nor does it seem likely that the slightly different
Jastrow trial wave function utilized in the two calculations
may be responsible. In our view, a possible explanation may
indeed lie with the finite population size employed in the
DMC calculations !a few hundred walkers". As mentioned
above, the use of a finite population size has the effect of
introducing a bias in the estimates obtained within DMC.
Such a bias must be corrected for, if one is attempting to
obtain accurate energy results.22

At the melting density !=0.0293 Å−3, our PIGS result is
in agreement with the GFMC estimate of Ref. 30, at least
within the statistical uncertainties of the GFMC calculation,
which are about ten times greater than ours. The GFMC
result was obtained using a Jastrow–Nosanow trial wave
function, which explicitly breaks translational invariance by
incorporating a one-body term whose effect is that of “pin-
ning” atoms at specific lattice positions. Such a trial wave
function has been shown to lead to more accurate estimates
in variational calculations for the crystal phase; as mentioned
above, however, our results based on PIGS, and on a trans-
lationally invariant, two-body Jastrow wave function, are
consistent with GFMC estimates, showing that the varia-
tional bias arising from the use of a simple wave function is
removed.

As previously mentioned, the starting configuration of
all of our simulations is with particles arranged on a regular
lattice, simple cubic for !"0.0262 Å−3, hcp for higher den-
sities. Obviously, in the course of the simulation particles do
not remain at their initial lattice positions nor do they neces-

sarily continue to form a crystal lattice. Nevertheless, struc-
tural correlation functions that can be computed by PIGS,
such as the pair correlation function !Fig. 5", display the
characteristic signs of crystallization as the density is in-
creased. For instance, the pair correlation function displays a
main peak that grows stronger as ! is increased, and second-
ary peaks also appear.

V. CONCLUSIONS

We performed extensive quantum Monte Carlo simula-
tions of condensed 4He at T=0, using the path integral
ground state method. We utilized a fourth-order approxima-
tion for the short imaginary-time propagator G!, and com-
pared the accuracy and efficiency of this method with other
existing techniques, including diffusion Monte Carlo, Green
function Monte Carlo, reptation quantum Monte Carlo as
well as path integral ground state with a more accurate form
of G!, namely, the pair product approximation.

Our results clearly show that PIGS is a valid alternative
to DMC, at least for this particular system; it generally pro-
vides more accurate energy results, particularly when the
trial wave function used as input to the calculation is only
moderately accurate, and qualitatively misses some of the
physics !e.g., a translationally invariant wave function, at
pressures where the system ought to display crystalline or-
der". We found that, even if the trial wave function does not
contain all of the relevant correlations, the projection time
needed to extract accurate ground state estimates is relatively
small !of the order of 0.25 K−1 at the highest density". In this
sense, PIGS seems more robust than DMC. It is worth re-
peating that PIGS does not suffer from the bias due to the
finite population size !affecting both DMC and GFMC", and
allows one to compute expectation values of operators that
do not commute with the Hamiltonian more easily than
DMC.

The use of the fourth-order propagator makes it possible
to carry out these calculations with a typical number of
imaginary time slices M =80–160; these simulations are
quite feasible on a common desktop workstation, in a rea-

FIG. 4. !Color online" Comparison of equations of state of condensed 4He,
computed by PIGS !diamonds" and DMC !circles, Ref. 25". Data show the
total energy per 4He atom e !in K" vs the density ! !in Å−3". Dotted line is
a polynomial fit to the diamonds; its only purpose is to guide the eyes.

FIG. 5. !Color online" Pair correlation function g!r" for condensed 4He,
computed by PIGS, at the equilibrium density !!=0.021 86 Å−3, solid line"
and at the melting density !!=0.0293 Å−3, dotted line". The distance r is in
angstrom.
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for the discrepancy between PIGS and DMC energy esti-
mates might be. Both calculations were performed for sys-
tems of relatively large size, i.e., finite-size corrections are
expected to be much smaller than the differences in energy
seen here. Nor does it seem likely that the slightly different
Jastrow trial wave function utilized in the two calculations
may be responsible. In our view, a possible explanation may
indeed lie with the finite population size employed in the
DMC calculations !a few hundred walkers". As mentioned
above, the use of a finite population size has the effect of
introducing a bias in the estimates obtained within DMC.
Such a bias must be corrected for, if one is attempting to
obtain accurate energy results.22

At the melting density !=0.0293 Å−3, our PIGS result is
in agreement with the GFMC estimate of Ref. 30, at least
within the statistical uncertainties of the GFMC calculation,
which are about ten times greater than ours. The GFMC
result was obtained using a Jastrow–Nosanow trial wave
function, which explicitly breaks translational invariance by
incorporating a one-body term whose effect is that of “pin-
ning” atoms at specific lattice positions. Such a trial wave
function has been shown to lead to more accurate estimates
in variational calculations for the crystal phase; as mentioned
above, however, our results based on PIGS, and on a trans-
lationally invariant, two-body Jastrow wave function, are
consistent with GFMC estimates, showing that the varia-
tional bias arising from the use of a simple wave function is
removed.

As previously mentioned, the starting configuration of
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lattice, simple cubic for !"0.0262 Å−3, hcp for higher den-
sities. Obviously, in the course of the simulation particles do
not remain at their initial lattice positions nor do they neces-

sarily continue to form a crystal lattice. Nevertheless, struc-
tural correlation functions that can be computed by PIGS,
such as the pair correlation function !Fig. 5", display the
characteristic signs of crystallization as the density is in-
creased. For instance, the pair correlation function displays a
main peak that grows stronger as ! is increased, and second-
ary peaks also appear.

V. CONCLUSIONS

We performed extensive quantum Monte Carlo simula-
tions of condensed 4He at T=0, using the path integral
ground state method. We utilized a fourth-order approxima-
tion for the short imaginary-time propagator G!, and com-
pared the accuracy and efficiency of this method with other
existing techniques, including diffusion Monte Carlo, Green
function Monte Carlo, reptation quantum Monte Carlo as
well as path integral ground state with a more accurate form
of G!, namely, the pair product approximation.

Our results clearly show that PIGS is a valid alternative
to DMC, at least for this particular system; it generally pro-
vides more accurate energy results, particularly when the
trial wave function used as input to the calculation is only
moderately accurate, and qualitatively misses some of the
physics !e.g., a translationally invariant wave function, at
pressures where the system ought to display crystalline or-
der". We found that, even if the trial wave function does not
contain all of the relevant correlations, the projection time
needed to extract accurate ground state estimates is relatively
small !of the order of 0.25 K−1 at the highest density". In this
sense, PIGS seems more robust than DMC. It is worth re-
peating that PIGS does not suffer from the bias due to the
finite population size !affecting both DMC and GFMC", and
allows one to compute expectation values of operators that
do not commute with the Hamiltonian more easily than
DMC.

The use of the fourth-order propagator makes it possible
to carry out these calculations with a typical number of
imaginary time slices M =80–160; these simulations are
quite feasible on a common desktop workstation, in a rea-

FIG. 4. !Color online" Comparison of equations of state of condensed 4He,
computed by PIGS !diamonds" and DMC !circles, Ref. 25". Data show the
total energy per 4He atom e !in K" vs the density ! !in Å−3". Dotted line is
a polynomial fit to the diamonds; its only purpose is to guide the eyes.

FIG. 5. !Color online" Pair correlation function g!r" for condensed 4He,
computed by PIGS, at the equilibrium density !!=0.021 86 Å−3, solid line"
and at the melting density !!=0.0293 Å−3, dotted line". The distance r is in
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A simple example shows that this is not necessarily so.
In Fig. 1 we show the calculated variational, mixed, and
extrapolated potential energy for the one-dimensional har-
monic oscillator

H!"
1
2

d2

dx2 #
1
2 x2, !4"

using a trial function given by

#T!x "!sech!ax ". !5"

The energy is minimized with a parameter value of a
!!$/2%1.253, with a best variational energy of Ev!$/6
%0.524, about 5% higher than the exact value.

Notice that the extrapolated potential energy is always
less than the correct value for all values of the parameter a;
for the harmonic oscillator it is straightforward to show that
the quadratic error term always makes the extrapolated po-
tential energy too low. The extrapolated curve is quite flat for
the larger a values shown, so all wave functions with these a
values will give about the same extrapolated value, but un-
fortunately all these extrapolated values are around 0.245
about 2% low. For an a value around 1.3, the variational and
mixed potential energies are both equal to about 0.242 about
3% low, so closeness of the two values does not guarantee
exceptional accuracy. Although usually closer to the correct
answer, it is possible for the mixed expectation value to be
farther from the correct answer than the variational result.

These results show that while the usual guidelines for
evaluating the quality of the extrapolation are useful, they do
not guarantee high accuracy. As might be expected, what
they do is make the extrapolated errors roughly of the same
quadratic quality as the variational wave function itself is for
the energy.

Another illustration of this problem with extrapolation
for the kinetic and potential energies can be seen by extrapo-
lating both using the same variational wave function. In that
case, the sum of the extrapolated energies,

Tx#Vx!2Em"Ev!2E0"Ev , !6"

deviates from the exact value for the ground state energy by
the difference between the variational and exact energies. So
again we should expect the errors in either the extrapolated
kinetic or potential energies to be of the same order as the
error in the variational total energy. Since the potential en-
ergy can be derived from the two-body distribution function,
similar errors should be expected for its and its Fourier trans-
form, the static structure factor.

III. PATH INTEGRAL GROUND STATE CALCULATIONS

In the quantum Monte Carlo methods the Schrödinger
equation is numerically solved by using statistical simula-
tion. The first step is to construct the equivalent integral
equation. Starting from the time dependent Schrödinger
equation we obtain

#!R ,&"!! G!R ,R!;&"&0"#!R!,&0"dR!, !7"

where R indicates the coordinates of the particles, &!'t is
the so-called imaginary time. In this equation G is the imagi-
nary time propagator, whose coordinate representation is
used below and is called the time-dependent Green’s func-
tion. Formally,

G!R ,R!;&"!(R"e"H&"R!), !8"

where H is the hamiltonian of the system. In the limit &
→* , Eq. !7" provides the exact ground state wave function.
DMC and GFMC are methods to iterate this equation by
means of random walks. The imaginary time propagator is
used to project out the ground state from some initial state.
Thus starting from an initial ensemble of random walkers
and propagating them iteratively according to G(R ,R!;&),

FIG. 1. Variational, mixed, and extrapolated energies for the harmonic os-
cillator, using the trial function sech(ax), as a function of the variational
parameter a.

FIG. 2. Potential energy per particle, V/N , in K for liquid !upper plot" and
solid !lower plot" phases of 4He as a function of the link in the PIGS
calculation.
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A simple example shows that this is not necessarily so.
In Fig. 1 we show the calculated variational, mixed, and
extrapolated potential energy for the one-dimensional har-
monic oscillator

H!"
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d2

dx2 #
1
2 x2, !4"

using a trial function given by

#T!x "!sech!ax ". !5"

The energy is minimized with a parameter value of a
!!$/2%1.253, with a best variational energy of Ev!$/6
%0.524, about 5% higher than the exact value.
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3% low, so closeness of the two values does not guarantee
exceptional accuracy. Although usually closer to the correct
answer, it is possible for the mixed expectation value to be
farther from the correct answer than the variational result.

These results show that while the usual guidelines for
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for the kinetic and potential energies can be seen by extrapo-
lating both using the same variational wave function. In that
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Tx#Vx!2Em"Ev!2E0"Ev , !6"
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the difference between the variational and exact energies. So
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III. PATH INTEGRAL GROUND STATE CALCULATIONS

In the quantum Monte Carlo methods the Schrödinger
equation is numerically solved by using statistical simula-
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where R indicates the coordinates of the particles, &!'t is
the so-called imaginary time. In this equation G is the imagi-
nary time propagator, whose coordinate representation is
used below and is called the time-dependent Green’s func-
tion. Formally,

G!R ,R!;&"!(R"e"H&"R!), !8"

where H is the hamiltonian of the system. In the limit &
→* , Eq. !7" provides the exact ground state wave function.
DMC and GFMC are methods to iterate this equation by
means of random walks. The imaginary time propagator is
used to project out the ground state from some initial state.
Thus starting from an initial ensemble of random walkers
and propagating them iteratively according to G(R ,R!;&),

FIG. 1. Variational, mixed, and extrapolated energies for the harmonic os-
cillator, using the trial function sech(ax), as a function of the variational
parameter a.

FIG. 2. Potential energy per particle, V/N , in K for liquid !upper plot" and
solid !lower plot" phases of 4He as a function of the link in the PIGS
calculation.

1367J. Chem. Phys., Vol. 113, No. 4, 22 July 2000 Path integral ground state method

Downloaded 21 Nov 2012 to 132.198.147.102. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

�T(R) = exp

2
4�

1

2

X

�<j
�
���r � � r j
���
3
5

equation of state



Sources & Writing Your Own Code
• M. Ceperley, Path Integrals in the Theory of Condensed Helium, 

Rev. Mod. Phys. 67, 279 (1995). 
• A. Sarsa, K. E. Schmidt, and W. R. Magro, A Path Integral Ground 

State Method, J. Chem. Phys. 113, 1366 (2000). 
• J. E. Cuervo, P.-N. Roy, and M. Boninsegni, Path integral ground 

state with a fourth-order propagator: Application to condensed 
helium. Chem. Phys. 122, 114504 (2005). 

• Y. Yan and D. Blume, Path Integral Monte Carlo Ground State 
Approach: Formalism, Implementation, and Applications, J. 
Phys. B: Atom., Mol., and Opt. 50, 223001 (2017). 

• https://github.com/agdelma/qmc_ho 
• http://code.delmaestro.org 
• https://github.com/DelMaestroGroup

http://code.delmaestro.org


Partners in Research & Computing




