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1. Introduction

dc conductivities of normal metals are finite at T>0,
even in absence of impurities

Re [o(w]) has a finite peak at w=0 with width given
oy inelastic scattering rate

Related behavior predicted in magnetic materials:

< S2(1)S7.(0) >—exp[-Dg’1]

for a ferromagnet at long times (DeGennes) where
D(T) is diffusion constant
This is normal, diffusive transport



In 1 dimension, spinless tight-binding model of
metal is directly related to antiferromagnet by
Jordan-Wigner transformation:

S¢=cic,-1/2, S; =(-1)"exp inzc;ck c

k< j

H = E[—t(c;cj+1 +hc.)+ Vﬁjﬁj+1]
J o+

J
= V(SIS +57S7,, + ASISE, ) — hS°]
J

J=t, A=V /t,h=u



Charge current operator of electron model is
spin current of spin model:

J, =-it(c;c,,, —hc.) = —%(SfS[+1 -hc.)
Jr=YJ,
[
Charge conductivity (spin conductivity) given

by Kubo formula:

]
o(w) = E[< E, >+<J.J,.> (a))]



*In principle, conductivity may have a non-zero
Drude weight, D(T), defined by

Re 0(w)=2nD(T)6(w)+0,.(w)

*This is known as ballistic transport and isn’t
generally expected, except at T=0

*However, it was shown that D (T)>0, forall T
for above Hamiltonian, for a range of parameters
(Mazur, Suzuki, Zotos et al., Prosen)

*Proof uses integrability of model — existence of
an operator, Q that commutes with H

and has a non-zero overlap with current operator:
<J/Q>#0



For h#0, we may use Q=J¢ 1, energy current

operator, defined by:
0H,=-i[H Hl=-(J, -J; ),
Jo ;=[S 838, - ST 858, + A(ST_ 8085, - 85,8785,

+A(SE S5SY, = S 878%,)]

j+l1

=J*(S,,x8,) S, (for A=1)
JE,T =E]E,j
j

*This is just the first non-trivial member of an
infinite family of local conserved quantities,
obeying [J(M H]=0, in this integrable model obtained
from transfer matrix



*Many (but not all) experts believe that this is a
special feature of integrable model and that

diffusive behavior: D(T)=0 for T>0,

would be recovered as soon as integrability is broken,
for example by adding 2"9 neighbor hopping or
interactions

*At half filling (h=0) <J./>=0

*Tomaz Prosen found a matrix product quasi-local
conserved operator which gives a non-zero

Mazur bound at h=0, for A<1, vanishing at
A=>1



2. Perturbative Calculation

*At low T we may use field theory methods:
bosonization, renormalization group

C,=EXp likejJWg(j)+exp [-ikgj]w, (j)

where ),  vary slowly

*We then bosonize resulting Dirac theory
*JAY;y,yiy,. term leaves boson model free,

with shifted Luttinger parameter, K

JAW Y. exp(dik,.j)+he) Umklapp term is
non-oscillating at k.=rt/2 (half-filling, h=0) and
gives sine-Gordon interaction in bosonized mod%I



=;[H2+v(iz)) +Acos(m¢)

Umklapp term (sine-Gordon interaction) is
irrelevant for A<1 (K>1) where model is gapless
*For A<1 we can ignore it at T=0 and we should
be able to treat it perturbatively at T<<J, even
when bare A/v ~A is not small

echarge (spin) current in bosonized model is:
J(x) = =vV/K 2xT1(x) giving conductivity:
o(q,w)=(K/2n)iw<dd> . (q,w). Ignoring Umklapp
and other irrelevant operators,
o(0,w)=0(w)=(ikKv/2mn)/(w+i€), independent of T
Re [o(w)]=(Kv/2)&(w)- purely a Drude peak




Feynman diagrams for
self energy to second
order in sine-Gordon
Interaction

(a)

(b)

(©)




*Including Umklapp, and other interactions, gives
a self energy M(q,w) to P-field and thus:
eo(w)=(iKvw/2m)/[w?-N(0,w)].

Umklapp term gives an imaginary term in N(w)
in second order: M(w)=-2il(T)w with [(T)~A2T4%3
(at zero field)

*M. Oshikawa and | calculated MN(qg,w) in 1997

for Electron Spin Resonance theory

[(T) is the inelastic scattering rate

*|t gives conductivity a Lorentzian form (with D=0):
o(w)=(iKv/2m)/[w+2il(T)]



*Using input from Bethe ansatz (Lukyanov &
Zamalodchikov) exact coupling constant A of
Umbklapp term can be determined and hence
exact coefficient, c(K), in M=c(K)T4k3

*For Heisenberg model, A=1, Umklapp becomes
part of a marginal interaction ~g and:

21 (T)=mg(T)*T, with g(T)~1/In (T,/T), T,=2.87

*While this all looks quite standard and convincing
this cannot be completely correct!

Prosen’s Mazur bound gives a non-zero Drude
weight, at h=0 for A<1



*Should we throw out this calculation? What’s wrong
with it? We believe it is correct, as far as it goes

(eg. gives good agreement with ESR data and also
NMR data — see below).

*However, it may be necessary to include higher order
terms in perturbation theory at low w™~T(T)y
[M(w)=-2ilfw/[1+y2i[/w] where y controls Drude
weight: y=<JQ>2/[<J>2<Q>%-<JQ>?], Q conserved
D=Kvy/[2r(1+y)]

*We have obtained corresponding result for o(w)
from “memory matrix” approach — method for
including effects of integrability (Rosch & Andrei)



This ansatz gives a conductivity:

K| my 2I°
Reo(w) = 4 o(w)+—; . :
2w |1+ y w +4I7(+y)

A linear superposition of a Lorentzian and
Delta-function: diffusive + ballistic transport



*Width of Lorentian is approximately I(T) as before
*v(h,T) controls fraction of spectral weight in

Drude peak

*Can this form of MN(w) be obtained by summing
some infinite family of Feynman diagrams that
mix J with conserved quantity, with y

controlling mixing?

M~-icA?w/[1-iycA?/w]

*“Conserving approximation” needed.



3. Numerical Results

*While Monte Carlo (Alvarez & Gross, Grossjohan
& Brenig) and exact diagonalization (Heidrich-
Meisner et al.) have been applied to calculate
the Drude weight, real-time finite temperature
Density Matrix Renormalization Group (tDMRG)
techniques are most effective.

*C(t,T)=<J(t)J;>(T) is calculated out to fairly large t.
lim, 5., C(t,T)/(2LT)=D(T).

*The main numerical limitation is the maximum
value of time, t, that can be reached.



DMRG Results on Drude Weight
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At low T<<J, where field theory may work, we
expect exponential decay if D=y=0:

C(t)~exp [-2It]. Our ansatz, for non-zero y gives
a constant plus exponentially decaying term,

at I-, 1/t <<T<«J: C(1) = vKT [y +e—2l“(1+y)t]
2n(l+y)

At intermediate times, '<<1/t<<T<<J, this

is linear and independent of y:
C(t)=(vKT/2m)(1-2It)



DMRG data at low T can be well- fit by this formula
allowing I' to be extracted and D to be estimated.

[ from DMRG agrees quite well with bosonization.
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4.1/T, in Heisenberg Spin Chains

A static magnetic field h, is applied to the nuclei
in @ magnet, then a small transverse oscillating
field is applied, to induce nuclear spin transitions.
Adsorption intensity versus frequency exhibits a
peak broadened around resonance frequency
due to coupling of nuclear spin to atomic spins.
Width, 1/T,, is 2"d order in hyperfine coupling.
For static field in z-direction:
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1 1 pdg 2 . o

T2 2n\A(q)\ <S§'S >(q.wy.hT)
*A(q) is hyperfine coupling form factor
*w, is nuclear magnetic resonance frequency:
wN=(HN/HB)h =0

*for Heisenberg model in a weak field h<<T, we
may approximate this finite field transverse
Green’s function by a zero field longitudinal one

<5§*S>(w=0,h)=2<5?5*>(w=h,0)



*This follows since H=H,-hS%. where [H,,5%]=0

So, S*/(t)=exp [-iht] exp[iH,t]S"exp[-iH,t]

*-hS?; also appears in Boltzmann weights in
calculating Green’s function, but is negligible for
h<<T<<]

*Normally 1/T, is dominated by g=mt region where
<525§%>(q,h) diverges

*However, if A(g) vanishes at g=m, g=0 region

can dominate and 1/T, is related to diffusive
behavior of <dd>(q,w). In this case:



2 =
_—f_ @) Im x. . (g, =h)

-h/T
l1-¢

T

~2-A0)' 2T f Vg (2m)

27 (vg)* +(2Th)
2|
' J h

- (for h <<T)

— A’

B 42 2 al

T~ 77\ 2hIn(J/T)
(Here we are ignoring ballistic term in <dd> which
appears to be zero or very small for h=0 and A=1.)



*These conditions are all met for NMR on
in-chain O-ions in Sr,CuO,

*This material contains Cu-O-Cu-O-Cu chains,
similar to some cuprate superconductors
*J=2000 K and Néel order only occurs at very
suppressed temperature, T\ =10 K

*Location of in-chain O-ions in between a
pair of magnetic Cu ions cancels hyperfine
coupling at g=m, A(g)=Acos (q/2)

J and A are known from susceptibility and Knight
shift measurements so we can make a

zero parameter fit to theory
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K. Thurber et al., PRL 87, 247202 (2001)
(Takashi Imai’s group)

*Allowing for 20% uncertainties in J and A,
agreement is quite good (although largest T may be
a bit high for field theory approximation)
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Thurber et al fitted the field-dependence of their

data to h'1/2. (Only 3 data points at 2 temperatures!)
TR

G 295K

(different O-site or
material, ignore)
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5. Conclusions and Open Question

*Lowest order field theory calculation predicts

a Lorentzian form for conductivity at low T

*For Heisenberg model at zero field this result
agrees quite well with tDMRG data and

1/T, experimental data on Sr,CuO,

*There is an additional Drude peak at A<1 which
appears to coexist with Lorentzian

*Can coexistence formula be derived from summing
Feynman diagrams?

*Additional experimental/numerical data for 1/T,?
J. Sirker, R.G. Pereira and I.A., PRB 83, 035115 (2011)



