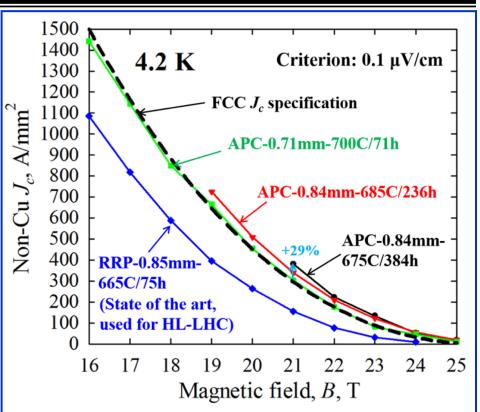


Teaching an Old Dog New Tricks: Fifty Percent Increase in Critical Current for Ternary Nb₃Sn Wires with Artificial Pinning Centers

M. D. Sumption¹, X. Xu², J. Rochester¹, X. Peng³, E. W. Collings¹ **1. The Ohio State University; 2. Fermilab; 3. Hyper Tech Research Inc.**


Funding Grants: G.S. Boebinger (NSF DMR-1157490); X. Xu (Fermilab LDRD); X. Peng, M. D. Sumption (US DOE SBIR)

While recent years have witnessed rapid progress in developing high temperature superconducting (HTS) conductors, MagLab users have found a way to teach an old dog, Nb₃Sn, a new trick! Using a new growth technique to refine grains and pin magnetic flux using artificial pinning centers (APC), MagLab users were able to push the performance of the Nb₃Sn conductor well beyond a twenty-year-long performance plateau. <u>Indeed, this new Nb₃Sn growth technique achieves a 50% performance increase in the critical current (J_c) over the current state-of-theart Nb₃Sn wire widely used in magnet construction today.</u>

The upper critical field (B_{c2}) and irreversibility field (B_{irr}) of wires with this new ternary-APC approach were measured using a electron transport technique in a 31T DC resistive magnet at the MagLab. Transport J_c values were also measured using a standard four point *I*-*V* technique in the same magnet.

The results show that ternary APC wires display both a high B_{c2} (28T) and B_{irr} (27T), roughly one to two teslas above present state of the art for optimized wires, These wires also display the highest non-copper J_c seen to date in the 16-22T regime (see Figure).

These improvements in the 16-22T regime are critically important for the proposed Future Circular Collider (FCC) to be located at CERN, <u>representing a significant milestone for Nb₃Sn</u> wire development of great importance for the multi-billion-dollar <u>FCC project</u>. Such conductors also have potential applications in the production of magnets needed for NMR and high field MRI.

Non-Cu J_c -B curves of the APC wire given various heat treatments and the state-of-the-art Nb₃Sn wire as reference, as well as the FCC J_c specification

Facility used: DC Facility: 31 T resistive magnet (Cell 7). **Citation:** X. Xu, X. Peng, J. Rochester, M. Sumption, and M. Tomsic, *"Record critical current density in Nb*₃*Sn superconductors with artificial pinning centers"*, **Supercond. Sci. and Technol.** Submitted March 2019.