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Broken-symmetry insulator = An electronic system with a gap to all charged 
excitations which is a direct consequence of spontaneous symmetry breaking. 
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Often these states break exact or approximate continuous symmetries (e.g U(1) or 
SU(2) ), so they have Goldstone modes (e.g. spin waves) or other low-energy 
collective modes. 



  

Examples of broken-symmetry insulators:

● Quantum Hall ferromagnets and exciton superfluids
[both in 2DEGs in semi-conductor structures and in graphene]

  

● Insulating states in moire flat bands [both in graphene and TMD materials]
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Outline:
● Mean-field (Hartree-Fock) theory of broken-symmetry 

insulators

● The Hartree-Fock path integral and fluctuations beyond 
mean-field

● Collective modes



  

Mean-field (Hartree-Fock) theory of broken-
symmetry insulators



  

Hartree-Fock = Variational energy minimization with Slater determinants

Slater determinant:

A Slater determinant is in one-to-one correspondence with a single-particle 
correlation matrix:



  

Using Wick’s theorem, the energy of a Slater determinant with SP correlation matrix P is 
found to be:

Hartree-Fock is a constrained optimization problem: minimize E[P] subject to the constraint 
that P2 = P. So we have to extremize the following cost function:

Lagrange multipliers

Mean-field Hamiltonian

with



  

Hartree-Fock self-consistency 
equation:

The interaction is replaced with a 
mean-field. The same electrons that 
move through the mean-field should 
also generate the mean-field.

Another physical interpretation of the self-consistency equation is provided by 

Brillouin’s theorem: If        is a Slater determinant satisfying the HF self-consistency 
equation, then            is orthogonal to all states with a single particle-hole excitation.

Work in the basis where P is diagonal:

Occupied states

Unoccupied states

State with a single PH excitation:



  

The energy of the self-consistent Hartree-Fock state is given by

and NOT by the sum of the occupied single-particle energies of the mean-field 
Hamiltonian.

The energies of the mean-field Hamiltonian do have a physical meaning, due to

Koopmans’ theorem: The energies of the mean-field Hamiltonian correspond to the 
mean-field energies for removing or adding a single electron to the system. 

Hartree-Fock ground state energy:

Energy with electron in state k removed:



  

Optimal Damping Algorithm (ODA)

Canonical Hartree-Fock problem: min E[P], subject to P2 = P and tr(P) = N 

S is a convex set if for

Example: One electron in a two-dimensional Hilbert space consisting of two orbitals.  

A general SP correlation matrix can be written as

The space of projectors is thus given by SU(2)/U(1) = S2

ODA is a simple numerical algorithm which is guaranteed to converge to a solution of 
this optimization problem. The key insight is to relax the constraints to P2 ≤ P and tr(P) = 
N. The matrices P which satisfy these constraints form a convex set S, the convex hull of 
which are projectors.
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S is a convex set if for

Example: One electron in a two-dimensional Hilbert space consisting of two orbitals.  

A general SP correlation matrix can be written as

The space of projectors is thus given by SU(2)/U(1) = S2

The convex set of 2x2 matrices P with trace one and which 
satisfy P2 = P is then simply the ball with boundary S2

T = 0

T = ∞



  

Optimal Damping Algorithm (ODA)

1) Take a matrix P1 from S 
2) Construct the Hartree-Fock mean-field Hamiltonian from P1

3) Diagonalize the mean-field Hamiltonian, and denote the SP correlation matrix           
 obtained from filling the N lowest energy states as P2

4) Define P(λ) = (1-λ)P1 + λP2

5) Minimize E(λ) = E[P(λ)] = E[P1] + C1 λ + C2 λ2/2  over the interval [0,1]. Denote the     
 optimal λ as λmin .

6) if E[P1] – E(λmin) < ϵ :
STOP

 else:
P1 ← (1-λmin) P1 + λmin P2 , go to step (2) 
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Optimal Damping Algorithm (ODA)

The ODA algorithm is guaranteed to converge (this statement requires a proof 
which is not given here). Furthermore, by construction, the energy decreases during 
every iteration.

Due to the nature of the algorithm, it is clear that the final converged state lies on 
the convex hull, and is therefore a valid SP correlation matrix corresponding to a 
particular Slater determinant.

For further details: J. Chem. Phys. 116, 8255  



  

Stability of a self-consistent Hartree-Fock state

Thouless’ theorem: Every Slater determinant which is not orthogonal to a given 
Slater determinant |ψ0> can be written as  

Moreover, the matrix M is unique.

Proof: Consider a Slater determinant which consists of N occupied states labeled by a. It 
can be written as

As this state is assumed not to be orthogonal to the reference state, we have



  

Stability of a self-consistent Hartree-Fock state

Denote the inverse of the NxN matrix fai as F, and define

We can now write



  

Stability of a self-consistent Hartree-Fock state

If our reference state is a local minimum in the Hartree-Fock variational energy 
landscape, then it should follow that

for small M.

One finds:

The linear term vanishes for solutions to the self-consistency equation due to Brillouin’s 
theorem.



  

Stability of a self-consistent Hartree-Fock state

Hermiticity of the Hamiltonian and the fermion anti-commutation relations imply that A is 
Hermitian, and B is symmetric.

The requirement that the self-consistent HF state is a local energy minimum is thus equivalent 
to

This condition will play an important later in our discussion of collective modes.



  

The Hartree-Fock path integral and fluctuations 
beyond mean-field



  

Assume we have found a solution of the Hartree-Fock self-consistency equation 
corresponding to the following Slater determinant:

Let us also rewrite the Hamiltonian in the basis of HF orbitals:

We will now construct a Grassmann path integral representation of the partition 
function, but using the following unconventional coherent states:



  

Conventional coherent states:

Particle-hole transformed coherent states:



  

Inserting resolutions of the identity as in the standard textbook construction of the 
Grassmann path integral we find: 

Hartree-Fock energy

Mean-field single-particle energies



  

This action can now be used for standard perturbative diagrammatic calculations. At zeroth 
order, this will produce the mean-field result. For example, the free energy is given by

Note that due to the normal ordering with respect to the HF state, the Hartree and Fock 
self-energy diagrams are zero:

This ensures that we do not double-count the Hartree-Fock renormalization of the single-
particle energies.

= = 0 (at T = 0)



  

When is the HF path integral a useful starting point?

Example: Square lattice Hubbard model with next-nearest neighbour hopping:

with
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dopings:



  

Collective modes



  

The effective RPA interaction that appears in diagrammatic calculations with the HF path 
integral is:

where G2 is the following sum of RPA diagrams:

This sum includes many familiar diagrams such as bubble diagrams and Berk-
Schrieffer diagrams.



  

Summing the infinite set of diagrams to obtain G2 is equivalent to solving the following 
Bethe-Salpeter equation:

Written out explicitly, we find

Fermi-Dirac 
distribution



  

At zero temperature, the Bethe-Salpeter equation becomes:

FD distribution at T=0, i.e. the occupation numbers

This equation can be rewritten as following matrix equation:

with The matrices A and B are the 
same as we introduced previously 
in our discussion of the stability of 
a Hartree-Fock solution.



  

Writing the solution to the Bethe-Salpeter equation becomes

with

To further simplify the solution, let us diagonalize ZHB. We have that

From this equation it follows that the eigenvalues of ZHB are real, except when |λ> is a null 
vector of HB. From the positivity of HB it also follows that the sign of λ is the same as the sign 
of <λ|Z|λ>. These properties can be translated into the following matrix equations:



  

We can now write

The collective mode matrix HB has the following particle-hole symmetry:

this implies that the eigenvalues of ZHB come in pairs with opposite signs      , from which 
it follows that the Ω’s come in degenerate pairs, with the corresponding eigenvectors 
related by particle-hole symmetry.   

This expression can be recognized as the propagator of the bosonic collective modes with 
energies Ω. The columns of S are the corresponding wavefunctions of the collective 
modes. The sign factors       denote whether the corresponding column Smi,λ  corresponds 
to a creation or annihilation operator for the collective mode.



  

Application to a translationally invariant system with a density-density interaction

Density-density interaction in 
momentum space and in Hartree-
Fock basis:

= Overlaps of cell-periodic part of the HF eigenstates

Collective mode operators:

If we define

With P the HF projector, and P┴ its complement, then the general equation  
becomes

n and q label the collective 
mode; α, β and k are indices 
of the wavefunction.

Colums of S are labeled by n and q



  

Application to a translationally invariant system with a density-density interaction

The general eigenvalue equation                                    becomes

Using the solutions to this equation, the propagator of the nth collective mode can be 
written as

Collective mode energies



  

RPA collective modes = Time-Dependent Hartree-Fock collective modes

The RPA Bethe-Salpeter equation can also be obtained from applying the Time-Dependent 
Variational Principle (TDVP) with Slater determinants.

Expanding this Lagrangian to second order in M and diagonalizing the quadratic part 
gives the same collective mode spectrum as that obtained from the RPA Bethe-Salpeter 
equation. We will not do this calculation here.

More details can be found in the following book: “Geometry of the time-dependent variational principle in quantum 
mechanics” 



  

RPA collective modes = Time-Dependent Hartree-Fock collective modes

TDVP with Slater determinants gives rise to the following TDHF equation:

(Dirac, 1930)

TDVP exactly conserves the energy:

To convince you of the equivalence of RPA and TDHF, we will work out a simple example 
where we calculate the linear response charge compressibility in TDHF for the following 
Hamiltonian: 

We perturb it with



  

RPA collective modes = Time-Dependent Hartree-Fock collective modes

As we are doing linear response, let us write                                , with P0 a solution of the 
SC HF equation.

Taking 

and working up to first order in both V and P1 , we find the following change in the charge 
density (also ignoring the exchange term)

with

the standard polarization bubble. We have thus reproduced the RPA result from TDHF. The 
details are left as an exercise.

HF mean-field energies of P0

Occupation numbers
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