Field theories for non-Fermi liquids

Sung-Sik Lee

McMaster University Perimeter Institute

Review : Ann. Rev. Cond. Matt. Phys. 9, 227 (2018)

Outline

- Introduction
- Non-Fermi liquids
 - Hot Fermi surface (Ising-nematic QCP)
 - Hot Spots (SDW QCP)
- Field theories for NFL
 - Perturbative approaches
 - Non-perturbative approach

Quantum matter (partial list)

	Entropy	Low-energy Effective Theory	
Trivial Insulator	Exp(-Δ/T)	0	
Topological States	(TL)ª a < d	TQFT / BCFT	
Critical states with Lorentz invariance	(TL) ^d	Relativistic QFT	
Fermi surface	k _F ^{d-1} T L ^d = (TL) (k _F L) ^{d-1}	QFT with infinitely many degrees of freedom	

(T: temperature, L: linear system size, d: space dimension, k_F: Fermi momentum)

This lecture is about

low-energy effective theories of strongly correlated metals (non-Fermi liquids) that arise near QCP

Fermi Gas

Many-body eigenstates are labeled by the occupation numbers of single-particle states $|n_{k_1,\sigma_1}, n_{k_2,\sigma_2}, \dots >$

Interacting Fermions

Shape of Fermi surface is subject to quantum fluctuations

Particles close to the Fermi surface have long life-time

$$\frac{1}{\tau} = \alpha V^2 E^2$$

V : microscopic interaction
α : kinematic constants
(FS shape, size, velocity)

Fermi Liquids

[Landau] [Shankar, Polchinski]

Low-energy eigenstates of interacting electrons are labeled by the occupation numbers of single-particle states

$$n_{k_1,\sigma_1}, n_{k_2,\sigma_2}, \dots >$$

- The well-defined single-particle excitations are quasiparticles with renormalized mass
- In Fermi liquids, low temperature properties of interacting electrons are qualitatively similar to those of free fermions
 - Specific heat : C ~ T
 - Magnetic susceptibility : $\chi \sim \text{const.}$

- Experimentally, NFL's are often characterized by anomalous thermodynamic / transport properties
- Spectroscopic evidences, while being more direct, are rarer

- At QCP, order parameter becomes gapless collective mode that mediates singular interactions between electrons
- Single-particle excitations created near FS no longer have long lifetime if the interaction is singular enough to generate strong non-forward scatterings

$$\frac{1}{\tau} = \alpha V(E)^2 E^2 > E$$

NFL's are described by interacting field theories that are not diagonalizable in single-particle basis

Two important factors that determines the nature of NFL near QCP

- space dimension
- wavevector of gapless collective mode

Space dimension

- 3d : quantum fluctuations are relatively weak
- 1d : no extended Fermi surface
- 2d : most challenging & interesting :
 - Extended Fermi surface
 - Strong quantum fluctuations at low energies

* We will focus on NFLs in d=2.

Hot Fermi Surface

Ising-nematic quantum critical metal

$$\begin{aligned} S &= \sum_{j=\uparrow,\downarrow} \int d^3 K \ c_j^{\dagger}(K) \Big[iK_0 + \epsilon_{\vec{K}} \Big] c_j(K) & \text{Kinetic energy} \\ &+ \frac{1}{2} \int d^3 q \ \left[q_0^2 + c^2 |\vec{q}|^2 \right] |\phi(q)|^2 & \text{Kinetic energy of the} \\ &+ e \int d^3 K d^3 q \ (\cos K_x - \cos K_y) \phi(q) c_j^{\dagger}(K+q) c_j(K) \\ & \text{Coupling between electrons and} \\ & \text{the order parameter} \end{aligned}$$

The order parameter couples to fermions as a momentum-dependent chemical potential, which deforms the Fermi surface in the I=2 channel.

Emergent locality in momentum space

- At low energies, fermions are primarily scattered along the directions tangential to FS
- Fermions with non-parallel tangential vectors are decoupled from each other in the low-energy limit (modulo pairing interaction in the presence of superconducting instability)

Minimal theory : two-patch theory

$$S = \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k \psi_{s,j}^{\dagger}(k) \left[ik_{0} + sk_{1} + k_{2}^{2} \right] \psi_{s,j}(k) + \frac{1}{2} \int d^{3}q \left[q_{0}^{2} + c^{2} |\vec{q}|^{2} \right] \phi(-q)\phi(q) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{j=1}^{N} \int d^{3}k d^{3}q \ \phi(q) \ \psi_{s,j}^{\dagger}(k+q)\psi_{s,j}(k) + \frac{e}{\sqrt{N}} \sum_{s=\pm} \sum_{s=$$

- $\psi_{s,j}(k)$ represents the electron field defined near two opposite points of FS (patches s=±), where k is momentum measured from the center of each patch
- The fermion-boson coupling is relevant, and the theory becomes strongly coupled at low energies : a small parameter is needed for controlled expansion

Perturbative approaches

1/N - expansion

- Collective modes are heavily damped with fermions
- In relativistic QFT, quantum fluctuations are tamed in the large N limit
- However, this is not the case in the presence of FS : fluctuations are amplified at low energies as fermions are scattered along the Fermi surface
- All planar graphs (in the one-patch theory) and beyond (in the two-patch theory) remain important [similar to a matrix model]

[Lee(09); Metlitski, Sachdev (10)]

[Altshuler, Ioffe, Millis; Kim, Furusaki, Wen, Lee, Polchinski,...]

Dynamical tuning

[Nayak, Wilczek(94); Mross, McGreevy, Liu, Senthil(10)]

- Tame quantum fluctuations by suppressing DOS of critical boson
- All symmetries kept
- Breaks locality of the theory : the bosonic mode can not have an anomalous dimension perturbatively

$$\frac{|q|^{1+\epsilon+\eta}}{\Lambda^{\eta}} = q^{1+\epsilon} \left(1 + \eta \ln q / \Lambda + ..\right)$$

UV divergent non-local terms such as $q^{1+\epsilon} \ln \Lambda$ can not arise as perturbative quantum correction

Dimensional Regularization scheme : no unique way to extend dimension

Tuning dim of space along with the dim of FS

- Crossover function f(x) is singular in the small x limit, and m \rightarrow 1 limit and $\omega \rightarrow 0$ limit do not commute
- You want to probe the region with f(1), but end up probing the f(0) limit in this scheme

Tuning co-dimension of FS

- A non-local version [Senthil, Shankar (09)]
- We will use local version [Dalidovich, Lee (13)]

The theory at d = 3 describes a spin triplet p-wave SC

Perturbative NFL near d=5/2

Two-loop results for the Ising-nematic critical metal

$$\frac{e^{*4/3}}{N} = 11.417\epsilon + 55.498\epsilon^2$$
$$z = \frac{3}{3 - 2\epsilon}$$

[Dalidovich, SL (13)]

Physical properties of the Ising-nematic critical metal

up ϵ^2 order

- Fermion propagator : $G(k) = \frac{1}{|\delta_k|^{1-0.1508\epsilon^2}} g\left(\frac{|\vec{K}|^{1/z}}{\delta_k}\right)$
- Boson propagator : $D(k) = \frac{1}{k_d^2} f\left(\frac{|\vec{K}|^{1/z}}{k_d^2}\right)$
- Specific heat: $c \sim T^{(d-2)+\frac{1}{z}} \qquad z = \frac{3}{3-2\epsilon}$
 - The collective mode does not have an anomalous dimension up to three-loop, but it is likely that a non-trivial anomalous dimension arises at higher orders [Holder, Metzner(15)]
 - Near d=5/2, there is no SC instability
 - At d=2, low-energy scaling will be cut off by SC instability

Summary of proposed control schemes

	Deformation schemes	Pro	Con
1/N	Increase the # of flavors	Symmetry, locality	Not controlled
Dynamical tuning	Modify the dispersion $ q ^2 \phi^2 \rightarrow q ^{1+\epsilon} \phi^2$	symmetry	Locality lost
Dim. reg.	Tune the dimension	Symmetry, locality	spurious UV/IR mixing
Co-Dim. reg.	Tune the co-dimensions of FS	Locality, No UV/IR mixing	Some symmetry broken

The main purpose of a perturbative expansion is to reveal new organizing principles, which may lead to nonperturbative understanding of physics in the deep quantum regime

• For Q=0 NFL, non-perturbative solution is available only for the chiral NFL

(without T, P symmetry) [Sur, SL (14)]

- Understanding non-chiral NFL with Q=0 in d=2 remain an open problem
- More progress made for NFL with Q≠0

Hot spots

Antiferromagnetic quantum critical metal

Minimal Theory

[Abanov, Chubukov, Schmalian; Metlitski, Sachdev; ..]

$$e_1^{\pm}(\vec{k}) = -e_3^{\pm}(\vec{k}) = vk_x \pm k_y$$
$$e_2^{\pm}(\vec{k}) = -e_4^{\pm}(\vec{k}) = \mp k_x + vk_y$$

$$\begin{split} \mathcal{S} &= \sum_{l=1}^{4} \sum_{m=\pm} \sum_{\sigma=\uparrow,\downarrow} \int \frac{d^{3}k}{(2\pi)^{3}} \,\psi_{l,\sigma}^{(m)*}(k) \left[ik_{0} + e_{l}^{m}(\vec{k})\right] \psi_{l,\sigma}^{(m)}(k) \\ &+ \frac{1}{2} \int \frac{d^{3}q}{(2\pi)^{3}} \left[q_{0}^{2} + c^{2} |\vec{q}|^{2}\right] \vec{\Phi}(-q) \cdot \vec{\Phi}(q) \\ &+ g_{0} \sum_{l=1}^{4} \sum_{\sigma,\sigma'=\uparrow,\downarrow} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{d^{3}q}{(2\pi)^{3}} \left[\vec{\Phi}(q) \cdot \psi_{l,\sigma}^{(+)*}(k+q) \vec{\tau}_{\sigma,\sigma'} \psi_{l,\sigma'}^{(-)}(k) + c.c.\right] \end{split}$$

Parameters of the theory

- v : Fermi velocity perpendicular to Q_{AF}
- c : boson velocity
- g : coupling bet'n fermion and boson

If v=0, hot spots connected by Q_{AF} are nested

• g^2/v is the coupling that controls perturbation

$$\begin{aligned} \mathcal{G}aussian \,scaling \,analysis\\ \mathcal{S} &= \sum_{l=1}^{4} \sum_{m=\pm} \sum_{\sigma=\uparrow,\downarrow} \int \frac{d^{3}k}{(2\pi)^{3}} \,\psi_{l,\sigma}^{(m)*}(k) \left[ik_{0} + e_{l}^{m}(\vec{k})\right] \psi_{l,\sigma}^{(m)}(k) \\ &+ \frac{1}{2} \int \frac{d^{3}q}{(2\pi)^{3}} \left[q_{0}^{2} + c^{2}|\vec{q}|^{2}\right] \vec{\Phi}(-q) \cdot \vec{\Phi}(q) \\ &+ \frac{g_{0}}{2} \sum_{l=1}^{4} \sum_{\sigma,\sigma'=\uparrow,\downarrow} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{d^{3}q}{(2\pi)^{3}} \left[\vec{\Phi}(q) \cdot \psi_{l,\sigma}^{(+)*}(k+q)\vec{\tau}_{\sigma,\sigma'}\psi_{l,\sigma'}^{(-)}(k) + c.c.\right] \end{aligned}$$

- Interaction is relevant
- The same perturbative approaches discussed for Q=0 case can be employed in this case

Perturbative window with tuning co-dim.

global U(1) can be kept

Lesson from the ε-expansion

[Sur, Lee (14); Lunts, Andres, Lee(17)]

- One-loop is not enough even to the leading order in ε: quantum fluctuations are not organized by number of loops
- Emergent quasi-locality with a hierarchy in velocities

$$v, c \to 0 \ \left(\frac{v}{c} \to 0\right), \ g \to 0 \left(\frac{g^2}{v} \to O(\epsilon)\right)$$

- Collective mode is damped by particle-hole excitation and acquires an O(ε) anomalous dimension
- Fermions remain largely coherent

Emergent hierarchy of velocities v << c << 1

 One may use the ratios of the velocities as small parameters to organize dynamics at d=2

Non-perturbative solution in d=2

$$D(q)^{-1} = m_{CT} - \pi v \sum_{n} \int dk \operatorname{Tr} \left[\gamma_1 G_{\bar{n}}(k+q) \Gamma(k,q) G_n(k) \right]$$

- In general, it is hard to solve the self-consistent equation because G(k), Γ(k,q) depend on D(q)
- However, the Dyson equation can be first solved in the v<< c << 1 limit, and the solution can be used to show that v, c and v/c flows to zero in the low-energy limit

Reduced Dyson equation in the v << 1 limit

- Boson propagator is entirely generated from particle-hole fluctuations
- v << c(v) if v <<1

Flow of v

 In the small v limit, v indeed flows to zero in the low energy limit, which completes the cycle of self-consistency

Exact exponents : $z=1, \quad \eta_{\phi}=1, \quad \eta_{\psi}=0$

[Schlief, Lunts, SL (16)]

Crossovers

- Two-stage RG flow
- Stage I
 - Non-perturbative effects generate flow from the perturbative regime (g²/v <<1) to strongly coupled regime (g²/v ~ 1)
 - RG flow is quickly attracted to a universal manifold parameterized by v
 - The place where the initial RG flow lands on the attractor depends on the bare value of v

Crossovers

- Stage II
 - In the low-energy limit, v and v/c(v) flows to zero logarithmically
 - The expansion in v/c(v) becomes asymptotically exact
 - Eventually the system flows to the fixed point with z=1, η=1 (exact)

- Due to the slow flow of v, the attractor approximately acts as a line of fixed points
 - Transient dynamical critical exponent' is determined by v

$$z = 1 + \frac{3}{4\pi} \frac{v}{c(v)}$$

Dynamical Spin Susceptibility $\chi^{''}(\omega, Q_{AF})$

• Only C₄ symmetric; no emergent O(2)

Electron spectral function at the hot spots

No quasiparticle at the hot spots

Superconductivity

- In d=2, SC kicks in, and RG flow is cut off
- T_c is not a universal quantity but depends on microscopic theory (bare parameters)

 Most likely, one needs small v with g²/v~1 to enter z=1 scaling regime before SC sets in (a target for numerics)

Latest numerics

Hierarchy of energy scales in an O(3) symmetric antiferromagnetic quantum critical metal: a Monte Carlo study

Carsten Bauer,¹ Yoni Schattner,² Simon Trebst,¹ and Erez Berg³

arXiv: 2001.00586

Summary

- Theories of NFL @ QCP can be divided into two classes
 - Hot Fermi surface
 - Hot Spots
- Various control schemes have been developed
- Perturbative solutions obtained from tuning the co-dim of FS eventually led to the nonperturbative solution for the SU(2) symmetric AF quantum critical metal in 2+1D

Open problems

- Beyond patch theory
 - Capturing momentum dependent universal data
- Superconductivity
- Disorder
- Local moments
- Full scope of the non-perturbative method that uses hierarchy between velocities (Migdal-like)