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Introductory Comments 

An understanding of materials behavior at non-zero 
temperature cannot be obtained solely from knowledge 
of T=0 properties. 

For this we need to use statistical mechanics/
thermodynamics coupled with “knowledge” of the 
interatomic couplings and interactions with any external 
fields.  This can be a very difficult problem! 
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Reminder from Statistical Mechanics 

 The Partition function contains all thermodynamic 
information:  

!

Pn =
1
Z
e"H /kBT

! 

Z = e"H /kBT

all states
#

The probability of the nth state appearing is:  

Thermodynamic properties are then determined from the 
free energy F where 

   F =-kBT lnZ 



Reminder from Statistical Mechanics 

 The Partition function contains all thermodynamic 
information:  

!
><

±="=
ji

ijiJ
,

1, ###H

! 

Z = e"H /kBT

all states
#

Metropolis Monte Carlo approach:  sample states via a 
random walk in probability space 

The fruit fly  of statistical 
physics:   The Ising model 

For a system of N spins have 2N states! 



Single Spin-Flip Monte Carlo Method 

T << Tc T~Tc T>>Tc 

Typical spin configurations for the 
Ising square lattice with pbc 



Metropolis Monte Carlo simulations of 
the 2-dim Ising model 



Produce the nth state from the mth state ! relative 
probability is Pn /Pm ! need only the energy difference, i.e. 
! E = (En-Em ) between the states  
 
Any transition rate that satisfies  detailed balance  is 
acceptable, usually the Metropolis form (Metropolis et al, 
1953). 
 

  W(m" n) =   # o-1 exp (-"E/kBT),   "E > 0 
         =  # o-1                  ,   "E < 0 
 

            where # o  is the time required to attempt a spin-flip. 

Single spin-flip sampling for the Ising model 
 
 



Metropolis Recipe: 
 

            1. Choose an initial state 
2. Choose a site i 
3. Calculate the energy change "E that results if the spin at 

   site i is overturned 
4. Generate a random number r such that 0 < r < 1 
5. If  r < exp(-"E/kBT),  flip the spin 
6. Go to 2. 

 
This is not a unique solution.  An alternative (Glauber, 1963):   

 

  Wn"m =#o 

-1
 [1+$i tanh (Ei /kBT)],   

   

where $iEi is the energy of the ith spin in state n.  
 

Both Glauber and Metropolis algorithms are special cases of a  
general transition rate   (Müller-Krumbhaar and Binder, 1973) 



Correlation times 
 
Define an equilibrium relaxation function % (t)  

 
      

 
 
  
 
 
  and  

       
        i.e. #  diverges at Tc ! 
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Problems and Challenges 

Statics:  Monte Carlo methods are valuable, but near Tc  

 # critical slowing down for 2nd order transitions 
 # metastability for 1st order transitions 

 $  Try to reduce characteristic time scales or circumvent       
 them 

 
Dynamics :  stochastic vs deterministic 



Multicanonical Sampling 
   The canonical probability P(E) may contain multiple maxima, 

widely spaced in configuration space  (e.g. 1st order phase 
transition, etc.)  

 

 # Standard methods become trapped  near one maximum; 
infrequent transitions between maxima leads to poor relative 
weights of the maxima and the minima of P(E).  

 
$ modify the single spin flip probability to enhance the  
 probability of the unlikely  states between the maxima  #  
 accelerates effective sampling!  

Berg and Neuhaus (1991) 

Reformulate the problem # an effective Hamiltonian 

))(()( !"! HHH effeff =



Compare ensembles: 
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Then, Thermodynamic variable 



Compare ensembles: 
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Then, Thermodynamic variable 

But, finding Heff isn’t easy 



Parallel tempering (replica exchange) 

   
Create multiple systems at different Ti 

T1  T2  T3  T4  T5  . . .  

Define  & i = 1/  T i 

Hukushima and Nemoto (1996);   Swendsen and Wang (1986) 



Parallel tempering (replica exchange) 

   
Create multiple systems at different Ti 

T1  T2  T3  T4  T5  . . .  

•! Simulate all systems simultaneously 

Define  & i = 1/  T i 

Hukushima and Nemoto (1996);   Swendsen and Wang (1986) 



Parallel tempering (replica exchange) 

   
Create multiple systems at different Ti 

T1  T2  T3  T4  T5  . . .  

•! Simulate all systems simultaneously 
•! At regular intervals interchange configurations at 

 neighboring T with probability P given by: 

! 

P = exp "i #" i#1( ) Ei # Ei#1( )[ ]

Define  & i = 1/  T i 

Energy of state i 



Parallel tempering (replica exchange) 

   
Create multiple systems at different Ti 

T1  T2  T3  T4  T5  . . .  

•! Simulate all systems simultaneously 
•! At regular intervals interchange configurations at 

 neighboring T with probability P given by: 

! 

P = exp "i #" i#1( ) Ei # Ei#1( )[ ]

Define  & i = 1/  T i 

Energy of state i 

But, the Ti must be chosen carefully 



Types of Computer Simulations 

Stochastic methods . . . (Monte Carlo) 

Deterministic methods . . . (Molecular dynamics) 



Perspective: 



Perspective: 



Improvements in Performance (Ising model): 

•!1970 •!1975 •!1980 •!1985 •!1990 •!1995 •!2000 •!1 
•!10 

•!100 
•!1000 

•!10000 
•!100000 

•!1000000 
•!1E7 
•1E8

•!1E9 
•!1E10 

•!relative performance 

•!computer speed 

•! Computer speed 
•! Algorithmic advances - cluster flipping, reweighting . . . 



The Random Walk in Energy Space 
with a Flat Histogram  method  

    

 or 
Wang-Landau sampling  



A Quite Different Approach 
 Random Walk in Energy Space with a Flat Histogram 
 
     Reminder:  
   
  

Estimate the density of states g(E) directly –– how? 
 

      1. Set g(E)=1;  choose a modification factor  (e.g. f0=e 
1 )   

 

  

      2. Randomly flip a spin with probability:   
  

    3. Set  g(Ei) " g(Ei)* f  
  H(E ) " H(E)+1  (histogram) 

 

      4. Continue until the histogram is flat ;  decrease f , e.g. f !+1= f 1/2
 

  

      5. Repeat steps 2 - 4 until  f = fmin~ exp(10 
-8) 

 

      6. Calculate properties using final density of states g(E) 

p(E1! E2 ) =min
g(E1)
g(E2 )

,1
"

#
$

%

&
'

Z = e
!H k

B
T

all
states

" # g(E) e!H /kBT
all

energies
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How can we test the method? 

•! Tc  is known for an infinite system (Onsager) 
•! Bulk properties are known  
•! g(E) is known exactly for small systems 

For a 2nd order transition, study the 2-dim Ising 
model: 

For a 1st order transition, study the 2-dim Potts model: 
 

          for q=10 

•! Tc  is known for an infinite system (duality) 
•! Good numerical values exist for many quantities 

H = !J ! i! j
i, j
" , ! i = ±1

H = !J !"i" j
i, j
" , " i =1,…,q



Demo:  Wang-Landau Sampling for the 
2-dim Ising model 



Density of States for the 2-dim Ising model 
Compare exact results with data from random walks in energy 
space:  L' L lattices with periodic boundaries 
 

% = relative error  ( exact solution is known for L( 64 ) 



Density of States:  Large 2-dim Ising Model 
 

"!use a parallel, multi-range random walk 

              NO exact solution is available for comparison! 
 
Question:   

•! Need to perform a random walk over ALL energies? 



Specific Heat of the 2-dim Ising Model 

 

 % = relative error 



Free Energy of the 2-dim Ising Model 

 

 % = relative error 



How Does fi Affect the Accuracy? 

Data for 
L=32: 
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error 



Compare Sampling in the 2-dim Ising Model 

 



What About a 1st Order Transition? 
Look at the q=10 Potts model in 2-dim 

 

At Tc coexisting states are separated by an energy barrier 



q=10 Potts Model:  Determine Tc 



q=10 Potts Model:  Internal Energy 



A new  old problem:  A Critical Endpoint* 

Theory 
predicts new 
singularities 
at (ge,Te)   
(Fisher and 
Upton, 1990) 

A schematic view:  T is temperature; g is a non-ordering field 

Spectator  
 phase 
 boundary 

* Historical note, this behavior was described but not given a name in:   

H. W. B. Roozeboom and  E. H. Büchner, Proceedings of the Koninklijke Academie 
der Wetenschappen (1905); The Collected Works of J. W. Gibbs (1906). 



A new  old problem:  A Critical Endpoint* 

Theory 
predicts new 
singularities 
at (ge,Te)   
(Fisher and 
Upton, 1990) 

A schematic view:  T is temperature; g is a non-ordering field 

Spectator  
 phase 
 boundary 

* Kritische Endpunkt:  Büchner, Zeit. Phys. Chem. 56 (1906) 257;  van der 
   Waals and   Kohnstamm, "Lehrbuch der Thermodynamik," Part 2 (1912). 



Critical Endpoint:  “New” singularities 

ceo TTastXTgTg →−≈− −
±

α
σ

2)()(

The  phase boundary: 

(Fisher and Upton, 1990) 

ce
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T
TTt −

=



Critical Endpoint:  “New” singularities 

ced TatanalytictermstVtUT +−−= ±
−

±
βαρ 1)(

(Wilding, 1997) 

The  phase boundary: 

(Fisher and Upton, 1990) 

The  coexistence density: 

ceo TTastXTgTg →−≈− −
±

α
σ

2)()(



Critical Endpoint:  “New” singularities 

αρ −
±−= 1)( tUTd

(Wilding, 1997) 

The  phase boundary: 

(Fisher and Upton, 1990) 

The  coexistence density: 

ceo TTastXTgTg →−≈− −
±

α
σ

2)()(

For the symmetric case 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

1,
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$Must search 
for the critical 
endpoint (CEP) 
in (H,T) space ! 

 (after Chin and Landau, 1987) 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  
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Order parameter 

 (after Chin and Landau, 1987) 

( )

2
2

2
1

324
3

2

32
12

1
1 2

PpP

MMP

MMMP

+=

!=

"
#

$
%
&

' +
!=

Sublattice #1 

Sublattice #2 Sublattice #3 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  
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Order parameter 

 (after Chin and Landau, 1987) 
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 Ordered state has the same symmetry as 
   the 3-state Potts model 



Triangular Ising Model with Two-Body 
and Three-Body Interactions  

W-L sampling: 
Generate a 2-dim 
histogram in E-M 
space # use to 
determine g(E,M) 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Magnetization as 
a function of both 
temperature and 
magnetic field 

Critical point 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Magnetization as 
a function of both 
temperature and 
magnetic field 

Critical endpoint 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Order parameter 
as a function of 
both temperature 
and magnetic field 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Phase diagram 
in temperature-
magnetic field 
space:  Finite 
size effects # 
locate the 
critical endpoint 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Curvature of the 1st order phase boundary near the critical 
endpoint 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Finite size scaling of the maximum in curvature 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Finite size scaling of the maximum in curvature 

Theoretical value 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Derivative of the 
magnetization 
coexistence 
diameter at the 
transition as a 
function of 
temperature 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Maximum of 
the derivative 
of the 
magnetization 
coexistence 
diameter 



Triangular Ising Model with Two-Body and 
Three-Body Interactions  

Maximum of 
the derivative 
of the 
magnetization 
coexistence 
diameter 

Theoretical 
 values 



Triangular Ising Model with Two-Body 
and Three-Body Interactions  

Singularity along the spectator phase boundary 

Finite size 
behavior at 
the critical 
endpoint 



Triangular Ising Model with Two-Body 
and Three-Body Interactions  

Susceptibility along the spectator phase boundary 

Finite size 
behavior 



Triangular Ising Model with Two-Body 
and Three-Body Interactions  

Specific heat along the spectator phase boundary 

Finite size 
behavior 



Can Wang-Landau Sampling be Applied 
to Quantum Models? 

Z = e!! H
all states
"

=
! n

n!n=0

#

" Tr !H( )n $ g(n)! n

n=0

#

"



Can Wang-Landau Sampling be Applied 
to Quantum Models? 

Z = e!! H
all states
"

=
! n

n!n=0

#

" Tr !H( )n $ g(n)! n

n=0

#

"

(Troyer et al., 2003) 

•! Perform a random walk in the space of series 
 expansion coefficients n 

•! Then, calculate properties from the partition 
 function 



WL-LSMS Method and the Gordon Bell Award 

Calculate the free energy of a magnetic nanoparticle by 
combining an LSMS (locally self-consistent multiple 
scattering) method with Wang-Landau sampling. 

(Eisenbach et  
 al., 2009) 

Monday, October 4, 2010 EU-US Summer School on HPC Challenges in Computational Sciences

Organization of the WL-LSMS code using a master-slave approach

Master/driver node controlling WL 
acceptance, DOS, and histogram

Communicate moment 
directions and energy

LSMS running on 
N processors to 
compute energy 
of particular spin-
configurations

Peak 
performance 
=1.8 Pflop 
on Jaguar at 
ORNL 



Can Wang-Landau Sampling be 
implemented differently? 

Different functions cn be used to let the modification 
factor approach f  =>1. 
Suppose we don’t use a modification factor at all but 
let f  => 1 as 1/t ?  (t is Monte Carlo time). (Belardinelli, 
Manzi, and Peyrera, 2008) 



Can Wang-Landau Sampling be 
implemented differently? 

After the density of states has converged, use the 
result to perform a multicanonical simulation 
 
But updates do not have to be single spin-flips, e.g. 
perform a multibondic cluster flip trial.  
(Berg and Janke, 2007) 

Use an N-fold way algorithm to study interface 
unbinding in an Ising model with antisymmetric walls 
(Schulz, Binder, and Mueller, 2005) 



Overview and Conclusion 

Wang-Landau sampling is powerful and flexible  

#! It provides direct access to the density of states 

#! It is easily parallelizable  

#! It is effective for the study of critical phenomena 

#! It eliminates the problem with energy barriers at 1st 
order phase transitions 

#! It can be used to study subtle problems like critical 
endpoints 

#! It can be easily extended 


