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being fermions they are prevented from condensing into
the lowest energy state. Instead, they fill up successively
the sequence of lowest-lying energy states, until a maxi-
mum is reached and all CFs have been accommodated.
The process is equivalent to the filling of states by elec-
trons at B!0. Hence, from the point of view of CFs, the
!!1/2 state appears equivalent to the case for electrons
at B!0. In spite of the huge external magnetic field at
half filling of the Landau level, CFs are moving in a
similar fashion to electrons moving in zero field. This
has been directly observed in experiment. Flux quantum
attachment has transformed these earlier electrons and
they are propagating along straight trajectories in a high
magnetic field, where normal electrons would orbit on
very tight circles. The mass of a CF, usually considered
to be a property of the particle, is unrelated to the mass
of the underlying electron. Instead, the mass depends on
the magnetic field and only on the magnetic field. In
fact, it is a mass of purely many-particle origin, arising
solely from interactions, rather than being a property of
any individual particle. It is another one of these baffling
implications of e-e interactions in high magnetic fields.
The absence of condensation and the lack of an energy
gap prevents the !!1/2 state from showing a quantized
Hall resistance. Instead the Hall line is featureless, just
as it is for electrons around B!0 (see Fig. 18).

The difference between !!1/3 and !!1/2 is striking.
One is a Bose-condensed many-particle state showing a
quantized Hall effect and giving rise to fractionally
charged particles. The other is a Fermi sea, in spite of
the existence of a huge external field, and its particles
have a mass that arises from interactions. One flux quan-
tum per electron makes all the difference.

There are many fascinating open questions associated
with the !!1/2 state, such as: how does the mass vary
with energy for CFs? and what is the microscopic struc-
ture of the particles? Also, how does the electron spin
(which we were neglecting throughout this lecture) af-
fect CF formation? A beautiful picture of composite fer-
mions being tiny dipoles is emerging. While one of the
vortices is placed directly on the electron (Pauli prin-
ciple), the position of the second vortex is a bit displaced
from exact center, rendering the object an electric dipole
in the 2D plane. There is great promise for future dis-
covery and future theoretical insight.

All those other FQHE states

Bose condensation of CBs consisting of electrons and
an odd number of flux quanta rationalizes the appear-
ance of the FQHE at the primary fractions around
Landau-level filling factor !!i"1/q with quantized Hall
resistances RH!h/(ve2) and deep minima in the con-
comitant magnetoresistance R. However, a multitude of
other FQHE states have been discovered over the years.
Figure 18 shows one of the best of today’s experimental
traces on a specimen with a multimillion cm2/V sec mo-
bility. What is the origin of these other states? The com-
posite fermion model offers an extraordinarily lucid pic-
ture. We shall discuss it for the sequence of prominent
fractions 2/5, 3/7, 4/9, 5/11, . . . and 2/3, 3/5, 4/7, 5/9, . . .
(i.e., !!p/(2p"1), p!2,3,4 . . . ) around !!1/2.

At half filling the electron system has been trans-
formed into CFs consisting of electrons which carry two
magnetic flux quanta. All of the external magnetic field
has been incorporated into the particles and they reside
in an apparently field-free 2D plane. Since they are fer-
mions, the system of CFs at !!1/2 resembles a system of
electrons of the same density at B!0. What happens as
the magnetic field deviates from B!0? For electrons
their motion becomes quantized into electron-Landau
orbits. They fill up their electron-Landau levels, encoun-
ter the energy gaps, and exhibit the well-known
IQHE. CFs around !!1/2 follow the same route. As
the magnetic field deviates from exactly !!1/2, the mo-
tion of CFs becomes quantized into CF-Landau orbits.
They fill up their CF-Landau levels, encounter CF-
energy gaps, and exhibit an IQHE. However, this is not
an IQHE of electrons, but an IQHE of CFs. This IQHE
of CFs arises exactly at !!p/(2p"1), which are the
positions of the FQHE features. In fact, the oscillating
features in the magnetoresistance R of the FQHE
around !!1/2 closely resemble the oscillating features
in R around B!0 and, once they have been shifted from
B!0 to !!1/2, they coincide with their position. This is
very remarkable in several ways.

CFs ‘‘survive’’ the additional (effective) magnetic field
(away from !!1/2), and the orbits of these composite
particles mimic the orbits of electrons in the equivalent
magnetic field in the vicinity of B!0. The CFs remain
‘‘good’’ particles. In this way, a complex electron many-
particle problem at some rational fractional filling factor
has been reduced to a single-particle problem at integer

FIG. 18. The FQHE as it appears today in ultrahigh-mobility
modulation-doped GaAs/AlGaAs 2DESs. Many fractions are
visible. The most prominent sequence, !!p/(2p"1), con-
verges toward !!1/2 and is discussed in the text.
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merized ground state for arbitrary values of M
and X (except M =0). The underlying reason is
that the phonon fluctuations induce an effective
electron-electron interaction of such a type that
a CDW ground state is always produced. (That
interaction is ineffective in the case n = 1 for
small coupling because of the Pauli excl.usion
principle ).This is accompanied by pairing of the
spin-up and spin-down electrons. However, this
conclusion is by no means inescapable. Prelim-
inary numerical studies' show that other forms
of the electron-phonon coupling (which induce
longer-range attraction) give a ground state with
superconducting correlations. This has also
been suggested from calculations based on per-
turbation theory. ' The MC method used in this
paper offers the possibility of numerically study-
ing comp1. icated one-dimensional electron-phonon
models (the inclusion of electron-electron inter-
action is straightforward) and thus investigating
the rich variety of ground-state phases for such
systems, without restriction to a perturbative
regime.

One of us (J.H. ) is indebted to D. Scalapino for
raising his interest in this problem and for nu-
merous stimu1. ating discussions. We acknowledge
helpful conversations with S. Kivelson, W. P. Su,

R. Sugar, N. Andrei, S. Shenker, K. Maki,
M. Stone, and particularly J. R. Schrieffer. One
of us (E.F.) thanks the Institute for Theoretical
Physics for its kind hospitality during the summer
of 1981. This work was supported by the National
Science Foundation under Grants No. PHY77-
27084 and No. DMR81-17182.
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The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential U. The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U/S~ .
PACS numbers: 72.15.Gd, 72.20. Mg, 73.90.+b

The experimental discovery by von Klitzing,
Dorda, and Pepper' of the quantization of the Hall
conductance of a two-dimensional electron gas in
a strong magnetic field has led to a number of
theoretical studies of the problem. ' ' lt has been
concluded that a noninteracting electron gas has
a Hall conductance which is a multiple of e'/h if
the Fermi energy lies in a gap between Landau
levels, or even if there are tails of localized
states from the adjacent Landau levels at the Fer-
mi energy. However, it can be concluded from

Laughlin's' argument that the Hall conductance is
quantized whenever the Fermi energy lies in an
energy gap, even if the gap lies within a Landau
level. For example, it is known that if the elec-
trons are subject to a weak sinusoidal perturba-
tion as well as to the uniform magnetic field, with
p=p/q magnetic-flux quanta per unit cell of the
perturbing potential, each Landau level is split
into P subbands of equal weight. ' One might ex-
pect each of these subbands to give a Hall con-
ductance equal to e'/ph, and that is what the clas-
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sical theory of the Hall current suggests, but ae-
eording to Laughlin each subband must carry an
integer multiple of the Hall current carried by
the entire Landau level. This result appears even
more paradoxical when it is realized that p, the
number of subbands, can become arbitrarily large
by an arbitrarily small change of the f1ux density.
This paper contains a calculation of the Hall con-
ductance for such a system, both in the limit of
a weak periodic potential and in the tight-binding-
limit of a strong periodic potential. We have de-
rived explicit expressions for the Hall currents
carried by the various subbands, and show how

the paradox is resolved.
We consider electrons in a potential U(x, y)

which is periodic inx, y with periods a, b, and in
a uniform magnetic induction & perpendicular to
the plane of the electrons. The band structure of
such a system depends critically on p =abeB/k,
which is the number of flux quanta per unit cell.
We take p to be a rational number p/q; the be-
havior for irrational values of p can be deduced
by taking an appropriate limit. We use the Landau
gauge in which the vector potential has compo-
nents (0, eBx). In this gauge the eigenfunctions of
the Schrodinger equation can be chosen to satisfy
the generalized Bloch condition

and are eigenfunctions of a Hamiltonian

1 . 8 2
H(k k ) = —ih —+8k, + —i@ +hk -eBx—+ U'Q y).

2ppg g~ ~
2yyz gy

The components of the velocity operator are then given by @ ' times the partial derivatives of H with
respect to 4„&2.

There are two quite different approaches to the problem of calculating the Hall conductance o H.
Laughlin' and Halperin' have studied the effects produced by changes in the vector potential on the
states at the edges of a finite system. By this technique the quantization of the conductance is made
explicit, but it is not obvious that the result is insensitive to boundary conditions. An alternative ap-
proach is to use the Kubo formula for a bulk two-dimensional conductor. In previous work using this
method' ' it has not been made obvious that an integer value for the conductance must be obtained.

Because of the relation between the velocity operator and the derivatives of H, the Kubo formula can
be written as

ie' ~ ~ (BH/ski) 8(BH/sk, )8 —(BH/Bk, )„q(BH/Bk, )~„+H 2
&~&EF &g B)F (~n —~S)

where A, is the area of the system and &,& ~ are
eigenvalues of the Hamiltonian. This can be re- only change
lated to the partial derivatives of the wave fune- when 0, is eh
tions u, and gives integrand re

by an x-independent phase factor 0
anged by 2~/aq or k, by 2~/b. The

duces to &8/Bk, . The integral is 2i
times the change in phase around the unit cell and
must be an integer multiple of 4~i.

The problem of evaluating this quantum number
remains. We have considered the potential

ie 2 2 Bg+ Ba Ba+ std

g,,»(x + qa, y)exp(- 2~ipy/b —ik,qa) =g,,„,(x,y + b)exp(- ik,b) =(&„,(x,y ), (I)
where k, (modulo 2&/aq) and k, (modulo 2ii/b) are good tluantum numbers. ' We ean now define functions
ii», =g» exp(-ik, x -ik, y) which satisfy the generalized periodic boundary conditions

a, , (x+qa, y)e """'=&0»(xiy + ) =&k,»&iy) i (2)

where the sum is over the occupied electron sub-
bands and the integrations are over the unit cells
in ~ and 4 space. The integral over the k-space
unit cell has been converted to an integral around
the unit ce11 by Stokes's theorem. For nonover-
lapping subbands g is a single-valued analytic
function everywhere in the unit cell, which ean

U(x,y) =U, cos( &2x/a)+U, e s(o2vy/b),

both in the limit of a weak periodic potential (I&l
«Ii~, ) and in the tight-binding limit of a strong
periodic potential. In the weak-potential limit
the wave function can be written as a superposi-
tion of the nearly degenerate Landau functions in
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Quantized Hall conductance as a topological invariant

15 MARCH 1985
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Department ofPhysics FM 15, -University of Washington, Seattle, Washington 98195

(Received 21 September 1984)

Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be ex-
pressed in a topologically invariant form showing the quantization explicitly. The new formulation
generalizes the earlier result by Thouless, Kohmoto, Nightingale, and den Nijs to the situation
where many-body interaction and substrate disorder are also present. When applying to the frac-
tional quantized Hall effect, we draw the conclusion that there must be a symmetry breaking in the
many-body ground state. The possibility of writing the fractionally quantized Hall conductance as a
topological invariant is also discussed.

I. INTRODUCTION

In the experiments on both integral' and fractional
quantized Hall effect it is found that the appearance of a
plateau in the Hall conductance is always accompanied by
a dip in the longitudinal conductance. This well-observed
fact suggests that the existence of the Fermi gap (the ener-
gy gap or mobility gap in which the Fermi energy of the
system lies) is a necessary condition for the quantization
of the Hall conductors. On the other hand, since the
phenomenon is quite independent of the details of the de-
vices used in the experiments, this condition must also be
sufficient (of course, at zero temperature and in weak
electric field).

By now, in the integral case, this relationship has been
quite established by perturbation theory ' or by gauge-
invariance argument. The latter is more profound for it
only uses global properties of the electron system in the
external fields. But the solenoid device typically em-
ployed in this theory seem to be artificial to most of the
known experiments.

Another nonperturbative approach was proposed by
Thouless et al. (henceforth referred to as TKNdN), who
considered an infinite two-dimensional electron gas in a
periodic substrate potential commensurate to the perpen-
dicular magnetic field. The Hall conductance calculated
from the Kubo formula was rewritten into an integral
vAich shows quantization explicitly. This expression has
the advantage that it is independent of the detailed struc-
ture of the periodic potential. Later this integral was
recognized as the first Chem class of a U(l) principal
fiber bundle on a torus. ' The fibers are the magnetic
Bloch waves and the torus corresponds to the magnetic
Brillouin zone.

Unfortunately, this theory cannot allow either impurity
disorder or many-body interactions, because the use of
Bloch waves is quite essential to their derivations. In this
paper we generalize TKNdN's idea so that an invariant
expression can still be constructed in the general case.

The method we are going to use is quite parallel to the
generalized formulation of Niu and Thouless for the
quantization of particle transport induced by a potential
varying slowly and periodically. We use the same

geometry as used by TKNdN, consequently we share with
them the same deficiency of ignoring the edge effect. '

The many-body wave functions are required to satisfy a
particular boundary condition described by two fixed
phase parameters. We then prove that the Hall conduc-
tance becomes independent of the phase parameters in the
thermodynamic limit, so that it can be averaged over all
the phases that prescribe different boundary conditions.
The averaged quantity which equals the Hall conductance
possesses an expression whose value is quantized explicit-
ly. This expression is of the same form as TKNdN's in-
tegral, except that the roles played by the Bloch wave
numbers are now played by the phase parameters in the
boundary conditions. Thus the same topological identifi-
cation can be made in the new theory.

In our generalized formulation it is found that the Hall
conductance is quantized in an integer times e /h as long
as the Fermi gap is finite and the many-body ground-state
energy is nondegenerate. This quantized value is topologi-
cal in the sense that it is unchanged under a variation of
the potentials so long as the Fermi gap is kept open.
Also, the result does not depend on how this gap is gen-
erated It cou.ld be generated by the action of the magnet-
ic field alone (Landau gap), together with a periodic sub-
strate potential (gaps between the subbands), or with the
many-body interactions.

To obtain a fractional quantization, we have to require,
in addition to a finite Fermi gap, that the ground-state en-
ergy is degenerate and the ground states have a discrete
symmetry breaking. In this case, the Fermi gap must be
generated by the many-body interactions, since otherwise
the degeneracy cannot be obtained, nor can the symmetry
breaking. Recently, Tao and Wu" generalized I.aughlin's
gauge-invariance argument; our result agrees with theirs.

The degeneracy in the ground-state energy at fractional
fillings has been clearly demonstrated by the numerical
calculation of Su' for a few small systems with torus
geometry. On the other hand, such degeneracy was not
found in Haldane's' numerical calculations with spheri-
cal geometry At the prese. nt time we cannot conclude (al-
though we suspect) whether the Haldane system will even-
tually present a degeneracy in the thermodynamic limit,
because it is not clear how the spherical geometry could
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➤ The quantization of the Hall conductance is robust 
against disorder and interaction as long as there is 
a gap 

➤ The only way for the Hall conductance to become 
fractional is that the ground state must be 
degenerate (on a torus) 

➤ The presence of magnetic field is not essential to 
their derivation

graphene sheet !Novoselov et al., 2005; Zhang et al.,
2005".

C. The quantum Hall effect

The quantum Hall effect was discovered by Klitzing et
al. !1980". They found that in a strong magnetic field the
Hall conductivity of a two-dimensional !2D" electron gas
is exactly quantized in the units of e2 /h. The exact quan-
tization was subsequently explained by Laughlin !1981"
based on gauge invariance and was later related to a
topological invariance of the energy bands !Thouless et
al., 1982; Avron et al., 1983; Niu et al., 1985". Since then
it has blossomed into an important research field in
condensed-matter physics. In this section we focus only
on the quantization aspect of the quantum Hall effect
using the formulation developed so far.

Consider a two-dimensional band insulator. It follows
from Eq. !3.6" that the Hall conductivity of the system is
given by

!xy =
e2

"
#

BZ

d2k
!2#"2$kxky

, !3.10"

where the integration is over the entire Brillouin. Once
again we encounter the situation where the Berry curva-
ture is integrated over a closed manifold. Here !xy is the
Chern number in the units of e2 /h, i.e.,

!xy = n
e2

h
. !3.11"

Therefore the Hall conductivity is quantized for a two-
dimensional band insulator of noninteracting electrons.

Historically the quantization of the Hall conductivity
in a crystal was first shown by Thouless et al. !1982" for
magnetic Bloch bands !see also Sec. VIII". It was shown
that, due to the magnetic translational symmetry, the
phase of the wave function in the magnetic Brillouin
zone carries a vortex and leads to a nonzero quantized
Hall conductivity !Kohmoto, 1985". However, it is clear
from the above derivation that for the quantum Hall
effect to occur the only condition is that the Chern num-
ber of the bands must be nonzero. It is possible that in
some materials the Chern number can be nonzero even
in the absence of an external magnetic field. Haldane
!1988" constructed a tight-binding model on a honey-
comb lattice which displays the quantum Hall effect with
zero net flux per unit cell. Another model is proposed
for semiconductor quantum well where the spin-orbit
interaction plays the role of the magnetic field !Qi et al.,
2006; Liu et al., 2008" and leads to a quantized Hall con-
ductance. The possibility of realizing the quantum Hall
effect without a magnetic field is attractive in device de-
sign.

Niu et al. !1985" further showed that the quantized
Hall conductivity in two-dimensions is robust against
many-body interactions and disorder $see also Avron
and Seiler !1985"%. Their derivation involves the same
technique discussed in Sec. II.B.2. A two-dimensional
many-body system is placed on a torus by assuming pe-

riodic boundary conditions in both directions. One can
then thread the torus with magnetic flux through its
holes !Fig. 5" and make the Hamiltonian H!%1 ,%2" de-
pend on the flux %1 and %2. The Hall conductivity is
calculated using the Kubo formula

!H = ie2" &
n&0

''0(v1('n)''n(v2('0) − !1 ↔ 2"
!(0 − (n"2 , !3.12"

where 'n is the many-body wave function with ('0) the
ground state. In the presence of flux, the velocity opera-
tor is given by vi=!H!)1 ,)2" /!!")i" with )i= !e /""%i /Li
and Li the dimensions of the system. We recognize that
Eq. !3.12" is the summation formula !1.13" for the Berry
curvature $)1)2

of the state ('0). The existence of a bulk
energy gap guarantees that the Hall conductivity re-
mains unchanged after thermodynamic averaging, which
is given by

!H =
e2

"
#

0

2#/L1

d)1#
0

2#/L2

d)2$)1)2
. !3.13"

Note that the Hamiltonian H!)1 ,)2" is periodic in )i
with period 2# /Li because the system returns to its
original state after the flux is changed by a flux quantum
h /e !and )i changed by 2# /Li". Therefore the Hall con-
ductivity is quantized even in the presence of many-
body interaction and disorder. Due to the high precision
of the measurement and the robustness of the quantiza-
tion, the quantum Hall resistance is now used as the
primary standard of resistance.

The geometric and topological ideas developed in the
study of the quantum Hall effect has a far-reaching im-
pact on modern condensed-matter physics. The robust-
ness of the Hall conductivity suggests that it can be used
as a topological invariance to classify many-body phases
of electronic states with a bulk energy gap !Avron et al.,
1983": states with different topological orders !Hall con-
ductivities in the quantum Hall effect" cannot be adia-
batically transformed into each other; if that happens, a
phase transition must occur. The Hall conductivity has
important applications in strongly correlated electron
systems, such as the fractional quantum Hall effect !Wen
and Niu, 1990", and most recently the topological quan-
tum computing $for a review, see Nayak et al. !2008"%.

ϕ
1

ϕ
2

FIG. 5. Magnetic flux going through the holes of the torus.

1973Xiao, Chang, and Niu: Berry phase effects on electronic properties
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Model for a Quantum Hall Eff'ect without Landau Levels:
Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane
Department ofPhysics, University of California, San Diego, La Jolla, California 92093

(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance a" in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity
anomaly" of (2+1)-dimensional field theories.

PACS numbers: 05.30.Fk, 11.30.Rd

The quantum Hall effect' (QHE) in two-dimensional
(2D) electron systems is usually associated with the pres-
ence of a uniform externally generated magnetic field,
which splits the spectrum of electron energy levels into
Landau levels. In this Letter I show how, in principle, a
QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic fiux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.

The model presented here is also interesting in that if
its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).

In the zero-temperature limit, the transverse conduc-
tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.

In the usual QHE, the gap at the Fermi level results
from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-
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FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.

Semenoff investigated the tight-binding model with
one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.
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geometrical constant of order unity, and g is the Lande g
factor for the electrons.

While the particular model presented here is unlikely
to be directly physically realizable, it indicates that, at
least in principle, the QHE can be placed in the wider
context of phenomena associated with broken time-
reversal invariance, and does not necessarily require
external magnetic fields, but could occur as a conse-
quence of magnetic ordering in a quasi-two-dimensional
system.

This requirement is not fulfilled by the physical system
(a domain wall in a PbTe-type semiconductor) in which
Fradkin, Dagotto, and Boyanovsky (FDB) have recent-
ly proposed related effects may be realized. In this mod-
el, spin-orbit coupling is supposed to give rise to the
effect, but this does not break time-reversal symmetry.
In fact, in "simplifying" the p bands of the Hamiltonian
that describes PbTe, FDB introduce an unphysical
effective spin-dependent hopping term that is odd under
time reversal, and thus break the time-reversal invari-
ance of the original physically motivated model. This,
rather than any topological character of the domain wall,
is the reason that FDB find the "parity anomaly" at the

end of their calculation.
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state changes from the normal semiconductor state to
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late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).

In the zero-temperature limit, the transverse conduc-
tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.

In the usual QHE, the gap at the Fermi level results
from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-
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FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.

Semenoff investigated the tight-binding model with
one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.
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consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.

Semenoff investigated the tight-binding model with
one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
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Figure 1 | Strong spin–orbit interaction gives rise to a single SS Dirac cone. Theory (see the Methods section) versus experiments. a,b, High-resolution
ARPES measurements of surface electronic band dispersion on Bi2Se3(111). Electron dispersion data measured with an incident photon energy of 22 eV
near the 0-point along the 0–M (a) and 0–K (b) momentum-space cuts. c, The momentum distribution curves corresponding to a suggest that two
surface bands converge into a single Dirac point at 0. The V-shaped pure SS band pair observed in a–c is nearly isotropic in the momentum plane, forming
a Dirac cone in the energy–kx–ky space (where kx and ky are in the 0–K and 0–M directions, respectively). The U-shaped broad continuum feature inside
the V-shaped SS corresponds roughly to the bottom of the conduction band (see the text). d, A schematic diagram of the full bulk three-dimensional BZ of
Bi2Se3 and the two-dimensional BZ of the projected (111) surface. e, The surface Fermi surface (FS) of the two-dimensional SSs along the K–0–M
momentum-space cut is a single ring centred at 0 if the chemical potential is inside the bulk bandgap. The band responsible for this ring is singly
degenerate in theory. The TRIMs on the (111) surface BZ are located at 0 and the three M points. The TRIMs are marked by the red dots. In the presence of
strong spin–orbit coupling (SOC), the surface band crosses the Fermi level only once between two TRIMs, namely 0 and M; this ensures the existence of a
⇡ Berry phase on the surface. f, The corresponding local density approximation (LDA) band structure (see the Methods section). Bulk band projections are
represented by the shaded areas. The band-structure topology calculated in the presence of SOC is presented in blue and that without SOC is in green. No
pure surface band is observed to lie within the insulating gap in the absence of SOC (black lines) in the theoretical calculation. One pure gapless surface
band is observed between 0 and M when SOC is included (red dotted lines).

experiment. The ‘V’ bands cross EF at 0.09Å�1 along 0–M and at
0.10Å�1 along 0–K, and have nearly equal band velocities, approx-
imately 5⇥105 m s�1, along the two directions. A continuum-like
manifold of states—a filled U-shaped feature—is observed inside
the V-shaped band pair. All of these experimentally observed
features can be identified, to first order, by a direct one-to-one
comparison with the LDA band calculations. Figure 1f shows the
theoretically calculated (see the Methods section) (111)-surface
electronic structure of bulk Bi2Se3 along the K–0–M k-space cut.

The calculated band structure with and without SOC are overlaid
together for comparison. The bulk band projection continuum on
the (111) surface is represented by the shaded areas, blue with
SOC and green without SOC. In the bulk, time-reversal symmetry
demands E(k,") = E(�k,#) whereas space inversion symmetry
demands E(k,") = E(�k,"). Therefore, all the bulk bands are
doubly degenerate. However, because space inversion symmetry
is broken at the terminated surface in the experiment, SSs are
generally spin-split on the surface by spin–orbit interactions except
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Add electron spin

2

d1 t(1 + 2 cos x cos y) d12 −2t cos x sin y

d2 λv d15 λSO(2 sin 2x − 4 sin x cos y)

d3 λR(1 − cos x cos y) d23 −λR cos x sin y

d4 −
√

3λR sin x sin y d24

√
3λR sin x cos y

TABLE I: The nonzero coefficents in Eq. 2 with x = kxa/2
and y =

√
3kya/2.

phase and the simple insulator. This term violates the
symmetry under twofold rotations in the plane.

H is diagonalized by writing φs(R + αd) =
uαs(k)eik·R. Here s is spin and R is a bravais lattice vec-
tor built from primitive vectors a1,2 = (a/2)(

√
3ŷ ± x̂).

α = 0, 1 is the sublattice index with d = aŷ/
√

3.
For each k the Bloch wavefunction is a four compo-
nent eigenvector |u(k)⟩ of the Bloch Hamiltonian ma-
trix H(k). The 16 components of H(k) may be writ-
ten in terms of the identity matrix, 5 Dirac matrices Γa

and their 10 commutators Γab = [Γa, Γb]/(2i)[9]. We
choose the following representation of the Dirac matrices:
Γ(1,2,3,4,5) = (σx ⊗ I, σz ⊗ I, σy ⊗ sx, σy ⊗ sy, σy ⊗ sz),
where the Pauli matrices σk and sk represent the sub-
lattice and spin indices. This choice organizes the ma-
trices according to TR. The TR operator is given by
Θ|u⟩ ≡ i(I ⊗ sy)|u⟩∗. The five Dirac matrices are even
under TR, ΘΓaΘ−1 = Γa while the 10 commutators are
odd, ΘΓabΘ−1 = −Γab. The Hamiltonian is thus

H(k) =
5

∑

a=1

da(k)Γa +
5

∑

a<b=1

dab(k)Γab (2)

where the d(k)’s are given in Table I. Note that H(k +
G) = H(k) for reciprocal lattice vectors G, so H(k) is
defined on a torus. The TR invariance of H is reflected in
the symmetry (antisymmetry) of da (dab) under k → −k.

For λR = 0 the there is an energy gap with magnitude
|6
√

3λSO −2λv|. For λv > 3
√

3λSO the gap is dominated
by λv, and the system is an insulator. 3

√
3λSO > λv

describes the QSH phase. Though the Rashba term vio-
lates Sz conservation, for λR < 2

√
3λSO there is a finite

region of the phase diagram in Fig. 1 that is adiabatically
connected to the QSH phase at λR = 0. Fig. 1 shows the
energy bands obtained by solving the lattice model in a
zigzag strip geometry[7] for representative points in the
insulating and QSH phases. Both phases have a bulk en-
ergy gap and edge states, but in the QSH phase the edge
states traverse the energy gap in pairs. At the transition
between the two phases, the energy gap closes, allowing
the edge states to “switch partners”.

The behavior of the edge states signals a clear differ-
ence between the two phases. In the QSH phase for each
energy in the bulk gap there is a single time reversed pair
of eigenstates on each edge. Since TR symmetry prevents
the mixing of Kramers’ doublets these edge states are ro-
bust against small perturbations. The gapless states thus
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FIG. 1: Energy bands for a one dimensional “zigzag” strip
in the (a) QSH phase λv = .1t and (b) the insulating phase
λv = .4t. In both cases λSO = .06t and λR = .05t. The edge
states on a given edge cross at ka = π. The inset shows the
phase diagram as a function of λv and λR for 0 < λSO ≪ t.

persist even if the spatial symmetry is further reduced
(for instance by removing the C3 rotational symmetry
in (1)). Moreover, weak disorder will not lead to local-
ization of the edge states because single particle elastic
backscattering is forbidden[7].

In the insulating state the edge states do not traverse
the gap. It is possible that for certain edge potentials the
edge states in Fig. 1b could dip below the band edge,
reducing - or even eliminating - the edge gap. However,
this is still distinct from the QSH phase because there will
necessarily be an even number of Kramers pairs at each
energy. This allows elastic backscattering, so that these
edge states will in general be localized by weak disorder.
The QSH phase is thus distinguished from the simple
insulator by the number of edge state pairs modulo 2.
Recently two dimensional versions[10] of the spin Hall
insulator models[11] have been introduced, which under
conditions of high spatial symmetry exhibit gapless edge
states. These models, however, have an even number
of edge state pairs. We shall see below that they are
topologically equivalent to simple insulators.

The QSH phase is not generally characterized by a
quantized spin Hall conductivity. Consider the rate
of spin accumulation at the opposite edges of a cylin-
der of circumference L, which can be computed using
Laughlin’s argument[12]. A weak circumferential electric
field E can be induced by adiabatically threading mag-
netic flux through the cylinder. When the flux increases
by h/e each momentum eigenstate shifts by one unit:
k → k + 2π/L. In the insulating state (Fig. 1b) this
has no effect, since the valence band is completely full.
However, in the QSH state a particle-hole excitation is
produced at the Fermi energy EF . Since the particle and
hole states do not have the same spin, spin accumulates
at the edge. The rate of spin accumulation defines a spin
Hall conductance d⟨Sz⟩/dt = Gs

xyE, where

Gs
xy =

e

h
(⟨Sz⟩L − ⟨Sz⟩R) |EF

. (3)

Here the expectation value of Sz is evaluated for the left
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Experimental Observation of the
Quantum Anomalous Hall Effect
in a Magnetic Topological Insulator
Cui-Zu Chang,1,2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1

Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1

Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† Yayu Wang,1† Li Lu,2

Xu-Cun Ma,2 Qi-Kun Xue1†

The quantized version of the anomalous Hall effect has been predicted to occur in magnetic
topological insulators, but the experimental realization has been challenging. Here, we report the
observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3,
a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance
reaches the predicted quantized value of h/e2, accompanied by a considerable drop in the longitudinal
resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall
resistance remains at the quantized value. The realization of the QAH effect may lead to the
development of low-power-consumption electronics.

The quantum Hall effect (QHE), a quan-
tized version of the Hall effect (1), was
observed in two-dimensional (2D) elec-

tron systems more than 30 years ago (2, 3). In
QHE, the Hall resistance, which is the voltage

across the transverse direction of a conductor
divided by the longitudinal current, is quantized
into plateaus of height h/ne2, with h being Planck’s
constant, e the electron's charge, and n an integer
(2) or a certain fraction (3). In these systems, the

QHE is a consequence of the formation of well-
defined Landau levels and thus only possible in
high-mobility samples and strong external mag-
netic fields. However, there have been numerous
proposals to realize the QHE without applying
any magnetic field (4–11). Among these propo-
sals, using the thin film of a magnetic topological
insulator (TI) (6–9, 11), a new class of quantum
matter discovered recently (12, 13), is one of the
most promising routes.

Magnetic field–induced Landau quantization
drives a 2D electron system into an insulating
phase that is topologically different from the
vacuum (14, 15); as a consequence, dissipation-
less states appear at sample edges. The topolog-
ically nontrivial electronic structure can also occur
in certain 2D insulators with time reversal sym-
metry (TRS) broken by current loops (4) or by
magnetic ordering (6), requiring neither Landau
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Fig. 1. Sample struc-
ture and properties. (A)
A schematic drawing de-
picting the principle of
the QAH effect in a TI
thin film with ferromag-
netism. Themagnetization
direction (M) is indicated
by red arrows. The chem-
ical potential of the film
can be controlled by a
gate voltage applied on
the back side of the di-
electric substrate. (B) A
schematic drawing of the
expected chemical poten-
tial dependence of zero
field sxx [sxx(0), in red]
and sxy [sxy(0), in blue]
in the QAH effect. (C) An
optical image of a Hall
bar device made from a
Cr0.15(Bi0.1Sb0.9)1.85Te3
film. The red arrow indi-
cates the current flow
direction during the mea-
surements. The light gray
areas are the remained
film, and the dark gray
areas are bare substrate
with the film removed.
The black areas are the
attached indium elec-
trodes. (D) Magnetic field dependence of ryx curves of the Cr0.15(Bi0.1Sb0.9)1.85Te3 film measured at different temperatures (from 80 K to 1.5 K). The inset
shows the temperature dependence of zero field ryx, which indicates a Curie temperature of ~15 K.
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Add magnetic dopants



From Integer to Fractional

The Landau levels 
are the oldest Chern 

bands

Completely filled 
LLs give rise to the 
integer quantum 

Hall effect

Partially filled LLs 
give rise to the 

fractional quantum 
Hall effect

Even though the FQHE is an interacting effect, there is nothing special 
about the interaction.  The physics is in fact dictated at the single-
particle level by the guiding-center algebra, [x, y] = iℓ2



A Quick Primer on Fractional Chern Insulators

➤ A flat Bloch band that has non-zero Chern number mimics the Landau level.  
When it is partially filled, a fractional quantum Hall effect can appear in the 
absence of magnetic field. This is called the fractional quantum anomalous Hall 
effect. 
 

Tang, Mei & Wen, PRL (2011); Neupert, Santos, Chamon & Mudry, PRL (2011); Sun, Gu, Katsura & Dąs 
Sarma (2011); Sheng, Gu, Sun & Sheng, Nature Comm. (2011); Regault & Bernevig, PRX (2011); 

➤ What does flat mean?  Flat in both energy dispersion and band geometry (Berry 
curvature and quantum metric) 

➤ The band-projected position operators do not commute, 
 

                                
 

For unit Berry curvature, . If lattice constant is  
5 nm, then the effective B field is 157 Tesla!

[x, y] = iΩ(k) ⇔ [x, y] = iℓ2

Beff = 2π ⋅ 625 Tesla /(unit cell nm2)
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Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit 
coupling. To fully explore the fundamental science and application of topological insulators, 
material realization is indispensable. Here we predict, based on tight-binding modelling and 
first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown 
along the [111] crystallographic axis are potential candidates for two-dimensional topological 
insulators. The topological band structure of these materials can be fine-tuned by changing 
dopant ions, substrates and external gate voltages. We predict that LaAuO3 bilayers have 
a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize 
the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional 
quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in eg 
systems are also discussed. 
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Correlated Electron Research Group (CERG), RIKEN-ASI, Wako 315-0198, Japan. Correspondence and requests for materials should be addressed to  
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Interface engineering of quantum Hall effects in 
digital transition metal oxide heterostructures
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Next, we consider the eg manifold. It is well known that the SOC 
is quenched within the eg manifold so it seems that the resulting 
band topology should be trivial. However, similar to graphene20,21 
and some TM ions22,23, the SOC can still take place through the 
virtual excitation of electrons between eg and t2g levels. According to 
the second-order perturbation theory, the effective SOC is given by 

H H H
E ESO

eg

SO SO

eg

ee

t t

e t t e′

∉
= 〈 〉〈 ′〉

−∑ | | | | ,

 
where ε labels the eg orbitals. Hence, the Hamiltonian can be  
written

H t T d d H V d dSO=
2

,− + +
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′
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rr
rr r r

r
r

r
r r r

′
′

ee

ee
e e
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where the SOC magnitude is given by l l= /2 ∆E, with ∆E roughly 
being the energy difference between eg and t2g levels. (The explicit 
form of the Hamiltonian is presented in the Methods and in Supple-
mentary Note 1.) We find that HSO r  opens up an energy gap at the Γ 
point and also the Dirac point located at K. From the inspection of 
the Z2 topological invariant and counting the number of edge states, 
we found that eg1, eg2 and eg3 systems become TIs (Fig. 2e,f). Here, 
the trigonal crystalline field is also important—if all t2g levels are 
degenerated, even the second-order SOC vanishes. A layer poten-
tial difference comparable to l  closes the gap at the Dirac point,  
turning the eg2 system into a trivial insulator. On the other hand, 
gaps at the Γ point are stable against this perturbation. Instead, these 
gaps close when the local potential difference between d z r3 2 2−  and 
dx y2 2−  is comparable to l . Thus, the TI state and the Jahn–Teller 
effect24 compete in real materials with the eg1 or eg3 configuration.

Materials consideration. Having established that the TIs can be 
realized in (111)-bilayer TMO for both t2g and eg configurations, 
we now turn to real materials. We aim to realize the integer fill-

(2)(2)

(3)(3)

ings established above using TM B ions with the formal valence  + 3 
or  + 4. For B3 + (4 + ), we choose La (Sr) for the A-site element in both 
the target TMO and the insulating substrate AB′O3, and Al (Ti) for 
the B′-site element in the insulating substrate. Controlling the strain 
effects and the layer potential difference is possible by replacing A 
and/or B′ with their isovalent elements. It is well known that some 
of the TMOs are insulating due to strong correlations25. Therefore, 
if the corresponding bulk system is heavily insulating, bilayering 
may not be useful. Even if the corresponding bulk system is metal-
lic, the low dimensionality in (111) bilayers may drive the system 
into a Mott insulator26. Further, the correlation effects are expected 
to reduce the effective band width and increase the splitting between 
occupied levels and unoccupied levels. While this effect does not 
change the band topology in eg electron systems, this could influence 
the topology in t2g systems by modifying the crystal field splitting 
between a1g and e′g levels. In addition, in a system with an integer 
number of electrons per site, local moments could be induced by the 
correlation effects resulting in the magnetic ordering. If the sym-
metry breaking by the magnetic ordering is strong, the system could 
become a trivial insulator. We do not consider such complexities by 
focusing on rather itinerant 4d and 5d electrons of TM ion, yet t2g 
electron systems are more susceptible for magnetic orderings than 
eg electron systems because of the smaller hopping intensity. These 
considerations somewhat limit the choice of TM and substrate mate-
rial. Our candidate materials for TIs are, therefore, LaRe3 + O3 as a t2g4  
electron system, LaRu3 + O3, LaOs3 + O3, SrRh4 + O3 and SrIr4 + O3 as 
t2g5  systems, and LaAg3 + O3 and LaAu3 + O3 as eg2 electron systems. 
Most of these materials have been synthesized and their references 
are summarized in Table 1. LaReO3, LaOsO3 and LaAgO3 have yet 
to be synthesized. According to Ralle and Jansen35, bulk LaAuO3 
has CaF2 structure rather than the perovskite. We expect this mate-
rial shapes the perovskite structure by, for example, high-pressure 
synthesis and grown on a substrate with the perovskite structure. If 
properly synthesized, perovskite LaAuO3 is expected to be metallic 
as LaAgO3 predicted by the density functional theory (DFT) calcu-

Second order SOC
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Figure 1 | Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. (a) Perovskite structure ABO3. (b) A (111) bilayer consisting of the 
top layer indicated by red circles and the bottom layer indicated by blue circles. The lattice constant is a0. The bilayer shown as solid lines in (b) forms 
the honeycomb lattice when projected on the [111] plane with the lattice constant a a= 2/3 0 (c). The real space coordinates are labelled by (x,y,z) in the 
original cubic lattice, while it is labelled by (X,Y) in the [111] plane. (d) Level structure of TM d orbital. In the cubic environment, d orbitals split into eg 
and t2g manifolds. With the SOC, t2g manifold further splits into two levels characterized by the effective total angular momentum j = 1/2 and 3/2. With 
the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With both the SOC and the trigonal field, t2g manifold splits into three 
levels and eg manifold splits into two levels, that is, all the degeneracies are lifted except the Kramers doublets. (e) ABO3 monolayer is grown on AO3-
terminated AB′O3 substrate capped by AB′O3. The direction of crystal growth is indicated by an arrow.
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lation33. We also note that growing thin films of perovskite TMOs 
along the [111] direction has already started36,37. While t2g2 systems 
are also candidates for TIs, the TI state is hard to realize because of 

the band overlap. For eg1 and eg3 systems, additional effects such as 
longer range transfer and the Jahn–Teller effect can easily modify 
the dispersion relations.

We first performed the DFT calculations for the bilayers of t2g 
systems LaReO3, LaRuO3, LaOsO3, SrRhO3 and SrIrO3 (details are 
presented in the Methods section.) Their dispersion relations are 
shown in Figure 3a–d. We notice the remarkable agreement between 
the DFT results and the TB result, Figure 2c, especially for LaReO3 
and LaOsO3. For SrRhO3, LaReO3 and LaRuO3 (not shown), the 
Fermi level crosses several bands. Thus, these systems are classified 
as topological metals rather than TIs. In LaOsO3 and SrIrO3, the 
Fermi level is located inside the gap. Therefore, from the analogy to 
the TB model, (111) bilayers of LaOsO3 and SrIrO3 are TIs. From 
our DFT calculations, it is noted that the material dependence of the 
dispersion relations is rather large for t2g systems. This is because a 
large number of band parameters are involved in the band structure 
including the local crystalline field.

We now move to eg2 electron systems, LaAgO3 and LaAuO3. 
Our DFT results for these systems are shown in Figure 3e,f. As in 
the t2g case, the DFT reproduces the TB result fairly well. In both 
undoped systems, the Fermi level is inside the gap at the K point, 
and from the analogy to the TB result, these systems are TIs. The gap 
amplitude is found to be about 150 meV for LaAuO3 and 40 meV 
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Figure 2 | Dispersion relations of the (111) bilayer. (a) and (b) t2g model 
in the strong SOC limit. The SOC is fixed as λ/t = 5 with ∆/t = 1 (red) and 
∆ = 0 (green). (c) and (d) t2g model in the weak SOC limit, ∆/t = 0.5 with 
λ/t = 1.5 (red), and ∆/t = 1.5 with λ/t = 0 (green). (e) and (f) eg model 
with l /t=0.2  (red) and l /t=0  (green). Figures (a), (c) and (e) show 
the bulk dispersion relations. The dispersions in red correspond to the 
topologically non-trivial bands with the Z2 invariants shown for each band. 
Sum of Z2 in the occupied bands gives the Z2 topological invariant for the 
corresponding filling. For example, when the lowest five bands of the t2g 
model are occupied by electrons in (a), Z2 invariant becomes 1 + 0 + 0 + 1 + 1 
mod 2 = 1. The insets in (a) and (c) show the zoom-up near the K point. 
Figures (b), (d) and (f) show the dispersion relations in finite-thick zigzag 
ribbons with the periodic boundary condition along the X direction and the 
openboundary condition along the Y direction. Parameters are the same 
as in the bulk dispersions. Edge modes supporting the spin current are 
indicated by red lines. For the t2g model with the weak SOC, there appear 
four edge channels between the third and the fourth bands as shown as 
blue lines in consistent with the Z2 number.
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Figure 3 | Density functional theory results of the dispersion relations 
of the (111) bilayer of transition-metal oxides. Symmetric bilayers: (a) 
LaReO3, (b) LaOsO3, (c) SrRhO3, (d) SrIrO3, (e) LaAgO3 and (f) LaAuO3. 
Bilayers shown in (a), (b), (e) and (f) are grown between LaAlO3, while 
those in (c) and (d) are grown between SrTiO3. Asymmetric bilayers of 
LaAuO3 grown between LaAlO3 and LaScO3 (g), and between LaAlO3 
and YAlO3 (h). The Fermi level is taken to be 0 of the vertical axis. Bilayers 
shown in (b), (d), (e), (f) and (h) are TIs with the band gap indicated,  
(g) is a trivial insulator and others are topological metals.

Table 1 | List of candidate materials.

Configuration Bulk Superlattice

LaReO3 t2g
4 — —

LaRuO3  t2g
5 Metallic27 —

SrRhO3  t2g
5 Metallic28 (Ref. 29)

SrIrO3  t2g
5 Metallic30,31 Metallic32

LaOsO3 t2g
5 — —

LaAgO3 eg2 Metallic (band 
calculation)33

—

LaAuO3 eg2 (Refs 34, 35) —

5

TABLE SI: List of candidate materials

Configuration Bulk Superlattice

LaReO3 t42g — —
LaRuO3 t52g metallic Ref. [2] —
SrRhO3 t52g metallic Ref. [3] Ref. [4]
SrIrO3 t52g metallic Refs. [5, 6] metallic Ref. [7]
LaOsO3 t52g — —
LaAgO3 e2g metallic (band calc.) Ref. [8] —
LaAuO3 e2g Refs. [9, 10] —

Here r labels site, ε labels eg orbitals, and σ =↑, ↓ labels spins. nrεσ = d†rεσdrεσ is the electron density for orbital-ε
and spin-σ, nrε =

∑
σ nrεσ is the electron density for orbital-ε, and nr =

∑
ε nrε is the total electron density at

site-r. U is on-site intraorbital repulsion, U ′ is on-site interorbital repulsion, and V is nearest-neighbor repulsion.
Now we 1/3-fill the 8th band, and try to find out the ground state. We project the interaction HI into the 8th

band, and study the effective hamiltonian in the partially filled band (the 8th band). [11]

Heff =
∑

k

E8(k)ψ
†
kψk +

1

Nuc

∑

k1k2k3

u(k1,k2,k3)ψ
†
k1

ψ†
k2

ψk3
ψk1+k2−k3

, (S5.2)

where E8(k) is the kinectic energy of the 8th band, and the interaction u is nothing but HI projected into the 8th
band. Nuc = Nx ·Ny is the total number of unit cells. 1/Nuc is the correct normalization factor.
Heff is exact diagonalized for 4 × 6 (Nx × Ny, these are the number of unit cells along a1 and a2 directions on

honeycomb lattice) unit-cell system with periodic boundary condition, with Ne = 8 electrons. Because Heff respects
the total momentum, We can diagonalize Heff with in each center-of-mass momentum sector. In the following figure,
we show the ground state and the first excited state energies as a function of the center-of-mass momentum. We
choose U = U ′ = t, V = 0.5t. The momentum kx, ky are shown as integers. For example, (kx, ky) = (2, 3) really
means (kx, ky) = (2 · 2π/Nx, 3 · 2π/Ny).
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A three-fold degenerate ground state manifold (GSM) is observed, [12] which is separated with the other states
by a clear energy gap ∼ 0.1. These three ground states are at momentum (0, 0), (0, 2), (0, 4) which is expected. The
reason is that the different ground states can be viewed as a result of twisted boundary condition 0 → 2π. If we twist
the boundary condition along the y direction 0 → 2π, the momentum of each electron is shifted: ky → ky + 2π

6 . So
for 8 electrons, the center of mass momentum shifts ky → ky + 8 2π

6 = ky + 2π
3 . This twist will drive ground state 1

with center of mass momentum (0,0) to ground state 2 with c.o.m. k = (0, 2). And it also drives ground state 2 into
ground state 3.
To confirm that this 3-fold degenerate ground state is really a fractional quantum Hall (FQH) state instead of

states such as CDW, we computed the Chern number by twist boundary condition. The details of the method are
described in Ref. [13]. Here we discretize the boundary phase unit cell into a 10 × 10 and 20 × 20 meshes. And the
Chern numbers for the three ground states are found to be independent of which mesh to use up to the fourth digit:
C1 = 0.3344, C2 = 0.3311, C3 = 0.3344. These values slightly deviate from C = 1/3 in the thermodynamic limit,
which is expected for a small system. The sum of the three Chern numbers is found to be exactly 1. This explicitly
shows that we are in the ν = 1/3 FQH phase.

[1] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498–1524 (1954).

A material-based spinful model to realize FCI



Where else can we find flat Chern bands?



Fractional Chern Insulators in tMoTe2

From Xiaodong Xu

Cai et al, Nature (2023); Park et al, Nature (2023); Zeng et al, Nature (2023); Xu et al, PRX (2023); 
For graphene, see Lu et al, Nature (2024);



Transition Metal Dichalcogenides (TMD)

DX, Zhu, Liu, Xu, & Yao PRL (2012)

Monolayer TMD breaks inversion symmetry, with a large spin splitting at the band edge. 
Spin and valley are locked.

generate long lived spin and valley accumulations on sam-
ple boundaries. The physics discussed here provides a
route towards the integration of valleytronics and spin-
tronics in multivalley materials with strong spin-orbit
coupling and inversion symmetry breaking.

The physics in monolayers is essentially the same for
group-VI dichalcogenides MX2 (M ¼ Mo;W, X ¼ S; Se),
described below using MoS2 as an example. Structurally,
MoS2 can be regarded as strongly bonded 2D S-Mo-S
layers that are loosely coupled to one another by Van der
Waals interactions. Within each layer, the Mo and S atoms
form 2D hexagonal lattices, with the Mo atom being
coordinated by the six neighboring S atoms in a trigonal
prismatic geometry [Figs. 1(a) and 1(b)]. In its bulk form,
MoS2 has the 2H stacking order with the space group D4

6h,
which is inversion symmetric. When it is thinned down to a
monolayer, the crystal symmetry reduces to D1

3h, and in-
version symmetry is explicitly broken: taking the Mo atom
as the inversion center, an S atom will be mapped onto an
empty location. As a consequence, the effects we predict
here are expected only in thin films with odd number of
layers, since inversion symmetry is preserved in films with
even number of layers.

We start by constructing a minimal band model on the
basis of general symmetry consideration. The band struc-
ture ofMoS2, to a first approximation, consists of partially
filled Mo d bands lying between Mo-S s-p bonding and
antibonding bands [25]. The trigonal prismatic coordina-
tion of the Mo atom splits its d orbitals into three groups:
A1ðdz2Þ, Eðdxy; dx2$y2Þ and E0ðdxz; dyzÞ. In the monolayer

limit, the reflection symmetry in the ẑ direction permits
hybridization only between A1 and E orbitals, which opens
a band gap at the K and $K points [25], schematically

shown in Fig. 1(c). The group of the wave vector at the
band edges (K) is C3h and the symmetry adapted basis
functions are

j!ci ¼ jdz2i; j!"
vi ¼

1ffiffiffi
2

p ðjdx2$y2iþ i"jdxyiÞ; (1)

where the subscript cðvÞ indicates conduction (valence)
band, and " ¼ &1 is the valley index. The valence-band
wave functions at the two valleys, j!þ

v i and j!$
v i, are

related by time-reversal operation. To first order in k, the
C3h symmetry dictates that the two-band k ' pHamiltonian
has the form

Ĥ0 ¼ atð"kx#̂x þ ky#̂yÞ þ
!

2
#̂z; (2)

where #̂ denotes the Pauli matrices for the two basis
functions, a is the lattice constant, t the effective hopping
integral, and ! the energy gap. These parameters are
obtained by fitting to first-principles band structure calcu-
lations and are listed in Table. I for the four group-VI
dichalcogenides [26]. We note that the same effective
Hamiltonian also describes monolayer graphene with stag-
gered sublattice potential [15,16]. This is not surprising, as
both systems have the same symmetry properties. What
distinguishes MoS2 from graphene is the strong SOC
originated from the metal d orbitals. The conduction
band-edge state is made of dz2 orbitals and remains spin
degenerate at K points, whereas the valence-band-edge
state splits. Approximating the SOC by the intra-atomic
contribution L ' S, we find the total Hamiltonian given by

Ĥ ¼ atð"kx#̂x þ ky#̂yÞ þ
!

2
#̂z $ $"

#̂z $ 1

2
ŝz; (3)

where 2$ is the spin splitting at the valence band top
caused by the SOC and ŝz is the Pauli matrix for spin.
The spin-up ( " ) and spin-down ( # ) components are com-
pletely decoupled and sz remains a good quantum number.
We emphasize that the spin splitting does not depend on
the model details; it is a general consequence of inversion
symmetry breaking, similar to the Dresselhaus spin split-
ting in zinc-blende semiconductors [27]. Time-reversal

FIG. 1 (color online). (a) The unit cell of bulk 2H-MoS2,
which has the inversion center located in the middle plane. It
contains two unit cells of MoS2 monolayers, which lacks an
inversion center. (b) Top view of theMoS2 monolayer. Ri are the
vectors connecting nearest Mo atoms. (c) Schematic drawing of
the band structure at the band edges located at the K points.

TABLE I. Fitting result from first-principles band structure
calculations. The monolayer is relaxed. The sizes of spin split-
ting 2$ at valence-band edge were previously reported in the first
principle studies [12]. The unit is Å for a, and eV for t, !, and $.
"1 ("2) is the Berry curvature in unit of #A2, evaluated at $K
point for the spin-up (-down) conduction band.

a ! t 2$ "1 "2

MoS2 3.193 1.66 1.10 0.15 9.88 8.26
WS2 3.197 1.79 1.37 0.43 15.51 9.57
MoSe2 3.313 1.47 0.94 0.18 10.23 7.96
WSe2 3.310 1.60 1.19 0.46 16.81 9.39
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generate long lived spin and valley accumulations on sam-
ple boundaries. The physics discussed here provides a
route towards the integration of valleytronics and spin-
tronics in multivalley materials with strong spin-orbit
coupling and inversion symmetry breaking.

The physics in monolayers is essentially the same for
group-VI dichalcogenides MX2 (M ¼ Mo;W, X ¼ S; Se),
described below using MoS2 as an example. Structurally,
MoS2 can be regarded as strongly bonded 2D S-Mo-S
layers that are loosely coupled to one another by Van der
Waals interactions. Within each layer, the Mo and S atoms
form 2D hexagonal lattices, with the Mo atom being
coordinated by the six neighboring S atoms in a trigonal
prismatic geometry [Figs. 1(a) and 1(b)]. In its bulk form,
MoS2 has the 2H stacking order with the space group D4

6h,
which is inversion symmetric. When it is thinned down to a
monolayer, the crystal symmetry reduces to D1

3h, and in-
version symmetry is explicitly broken: taking the Mo atom
as the inversion center, an S atom will be mapped onto an
empty location. As a consequence, the effects we predict
here are expected only in thin films with odd number of
layers, since inversion symmetry is preserved in films with
even number of layers.

We start by constructing a minimal band model on the
basis of general symmetry consideration. The band struc-
ture ofMoS2, to a first approximation, consists of partially
filled Mo d bands lying between Mo-S s-p bonding and
antibonding bands [25]. The trigonal prismatic coordina-
tion of the Mo atom splits its d orbitals into three groups:
A1ðdz2Þ, Eðdxy; dx2$y2Þ and E0ðdxz; dyzÞ. In the monolayer

limit, the reflection symmetry in the ẑ direction permits
hybridization only between A1 and E orbitals, which opens
a band gap at the K and $K points [25], schematically

shown in Fig. 1(c). The group of the wave vector at the
band edges (K) is C3h and the symmetry adapted basis
functions are

j!ci ¼ jdz2i; j!"
vi ¼

1ffiffiffi
2

p ðjdx2$y2iþ i"jdxyiÞ; (1)

where the subscript cðvÞ indicates conduction (valence)
band, and " ¼ &1 is the valley index. The valence-band
wave functions at the two valleys, j!þ

v i and j!$
v i, are

related by time-reversal operation. To first order in k, the
C3h symmetry dictates that the two-band k ' pHamiltonian
has the form

Ĥ0 ¼ atð"kx#̂x þ ky#̂yÞ þ
!

2
#̂z; (2)

where #̂ denotes the Pauli matrices for the two basis
functions, a is the lattice constant, t the effective hopping
integral, and ! the energy gap. These parameters are
obtained by fitting to first-principles band structure calcu-
lations and are listed in Table. I for the four group-VI
dichalcogenides [26]. We note that the same effective
Hamiltonian also describes monolayer graphene with stag-
gered sublattice potential [15,16]. This is not surprising, as
both systems have the same symmetry properties. What
distinguishes MoS2 from graphene is the strong SOC
originated from the metal d orbitals. The conduction
band-edge state is made of dz2 orbitals and remains spin
degenerate at K points, whereas the valence-band-edge
state splits. Approximating the SOC by the intra-atomic
contribution L ' S, we find the total Hamiltonian given by

Ĥ ¼ atð"kx#̂x þ ky#̂yÞ þ
!

2
#̂z $ $"

#̂z $ 1

2
ŝz; (3)

where 2$ is the spin splitting at the valence band top
caused by the SOC and ŝz is the Pauli matrix for spin.
The spin-up ( " ) and spin-down ( # ) components are com-
pletely decoupled and sz remains a good quantum number.
We emphasize that the spin splitting does not depend on
the model details; it is a general consequence of inversion
symmetry breaking, similar to the Dresselhaus spin split-
ting in zinc-blende semiconductors [27]. Time-reversal

FIG. 1 (color online). (a) The unit cell of bulk 2H-MoS2,
which has the inversion center located in the middle plane. It
contains two unit cells of MoS2 monolayers, which lacks an
inversion center. (b) Top view of theMoS2 monolayer. Ri are the
vectors connecting nearest Mo atoms. (c) Schematic drawing of
the band structure at the band edges located at the K points.

TABLE I. Fitting result from first-principles band structure
calculations. The monolayer is relaxed. The sizes of spin split-
ting 2$ at valence-band edge were previously reported in the first
principle studies [12]. The unit is Å for a, and eV for t, !, and $.
"1 ("2) is the Berry curvature in unit of #A2, evaluated at $K
point for the spin-up (-down) conduction band.

a ! t 2$ "1 "2

MoS2 3.193 1.66 1.10 0.15 9.88 8.26
WS2 3.197 1.79 1.37 0.43 15.51 9.57
MoSe2 3.313 1.47 0.94 0.18 10.23 7.96
WSe2 3.310 1.60 1.19 0.46 16.81 9.39
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Fig. 1 | Crystal structures and piezoelectric force microscopy of bilayer TMDs. a, H-stacked bilayer TMD. The two layers are stacked in antiparallel 
configuration, and the inversion symmetry is restored as a whole with zero net polarization. M, metal atom (W or Mo). X, chalcogen atom (S or Se).  
b,c, MX (b) and XM (c) stacking forms of R-stacked bilayer TMD. The two layers are stacked in parallel, and an out-of-plane polarization exists due to the 
vertical alignment of different atoms. −P (b) and +P (c) denote downward and upward polarization, respectively. d,e, Amplitude (d) and phase (e) images 
of vertical piezoelectric force microscopy (PFM) on MoSe2 device p1. The adjacent triangular domains (orange dots) exhibit finite PFM contrast. Scale bars, 
200!nm. f, Schematic illustration of lateral PFM measurement on gated MoSe2 device p2 (left). The thickness of BN is 13.7!nm. Amplitude image of lateral 
PFM under different bottom gate voltages VB. Schematic of the domain configuration is illustrated for VB!=!−4!V (left) and VB!=!2!V (right), as a guide to  
the eyes. The area surrounded by the solid green curves is the bilayer MoSe2 region. The wrinkles, cracks and bubbles are shown with dotted green curves. 
The red and blue regions correspond to up and down domains, respectively. Scale bar, 300!nm. a.u., arbitrary units.
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Fig. 2 | Hysteresis in R-stacked bilayer TMD devices. a, The resistance of graphene in device WSe2 d1 as a function of top gate in the forward (red) and 
backward (blue) scan directions. Scan range −0.43 to +0.51!V!nm−1. Inset, the device structure and the optical image of device WSe2 d1. Scale bar, 5!μm. 
The data were taken from the device on the right. b–e, The resistance of graphene in R-stacked bilayer TMD devices as a function of the bottom gate in the 
forward and backward scan directions. b, WSe2 d1. Scan range −0.38 to +0.38!V!nm−1. Inset, enlarged data. c, MoSe2 d1. Scan range −0.22 to +0.28!V!nm−1. 
d, WS2. Scan range −0.12 to +0.15!V!nm−1 with −0.080!V!nm−1 applied to the top gate. e, MoS2. Scan range −0.17 to +0.19!V!nm−1. The ranges in the x axes in 
c–e are reduced for a better visualization of the resistance peaks.
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Twisted R-stacked TMD Homobilayer

The variation of the local stacking will lead to alternating out-of-plane electric 
dipoles in the MX and XM region, called moire ferroelectricity

The Dipole Picture of Composite Fermions

Di Xiao

Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
(Dated: December 15, 2023 – June 11, 2024)

I. SYMMETRY

Figure 1 shows a twisted TMD homobilayer. It has �3� and �2� symmetry and the corresponding
symmetry group is �3. Speci�cally, under �2�, the MX region is mapped to the XM region.

II. CONTINUUMMODEL

To write down the continuum Hamiltonian, we make two assumptions: (i) The moire potential
varies su�ciently smooth such that mixing between the � and �� valleys can be neglected; and (ii) the
band gap is su�ciently large such that we only consider the valence band top where a single-band ef-
fective mass approximation is valid. With these assumptions, the continuumHamiltonian of a twisted
TMD homobilayer for the � valley takes the form,

� = ���(� � ��)2 + ��(�) ��(�)
��(�)† ��(� � ��)2 + ��(�)

� . (1)

The Hamiltonian for the �� valley can be obtained via the time-reversal symmetry.
Due to the translation symmetry at the moire length scale, the moire potentials admit a Fourier

expansion in terms of the moire reciprocal lattice vectors. Let us �rst consider the diagonal terms. ��,�
must be real and respect �3� symmetry. To the lowest order of the Fourier expansion, we can write

��,�(�) = 2��,�
�

�=1,3,5
cos(�� � � + ��,�) . (2)

C2y

C3z

(a) (b)

FIG. 1. (a) Twisted TMD homobilayer. (b) Dark color and light color indicate atoms residing in the top and
bottom layer, respectively. The symmetry group is �3.

Point group D3



momentum shift between the two twisted layers. When the
bilayer is polarized by a vertical displacement potential,
the band Chern numbers are driven to zero before ΔðrÞ
becomes topologically trivial in real space. In partially
filled topological flat bands, interactions can, e.g., break
time-reversal symmetry to form quantum anomalous Hall
states.
Aligned bilayers.—To derive a moiré continuum

Hamiltonian, we start by analyzing the electronic structure
of an aligned bilayer [21]. Because the #K valleys are
related by time-reversal symmetry T̂ , we can focus on the
þK valley. In an AA stacked TMD homobilayer [Fig. 1],
the valence states at the þK valley valence band maximum
are mainly of dx2−y2 þ idxy orbital character, have spin up
(↑) along ẑ axis [16], and are separated from spin-down (↓)
states by strong spin-orbit splitting. Retaining only the spin
up valence-band states at theþK valley yields the two-band
k · p Hamiltonian [17],

H↑ðθ¼ 0;d0Þ¼
 
−ℏ2k2

2m& þΔbðd0Þ ΔTðd0Þ

Δ†
Tðd0Þ −ℏ2k2

2m& þΔtðd0Þ

!
; ð1Þ

with parameters that depend on the displacement d0
between the aligned layers. In Eq. (1), b and t refer to
bottom (b) and top (t) layers, k is momentum measured
from the þK point, m& is the valence band effective mass
that is approximately independent of d0 [17], Δb;t are layer-
dependent energies, and ΔT is an interlayer tunneling
amplitude. The dependence of Δα (α ¼ b, t, T) on d0 is
constrained by the symmetry properties of the bilayer.
The two-dimensional lattice periodicity of the aligned
bilayers implies that the Δα are periodic functions of d0.
A z ↔ −z mirror operation interchanges b and t and maps
displacement d0 to −d0, implying that Δtðd0Þ ¼ Δbð−d0Þ.
Threefold rotation around the ẑ axis requires that Δb andΔt
be invariant when d0 is rotated by 2π=3. These symmetry
constraints lead to the following two-parameter lowest-
harmonic parametrization:

Δlðd0Þ ¼ 2V
X

j¼1;3;5

cosðGj · d0 þ lψÞ; ð2Þ

where l ¼ 1 for the b layer and l ¼ −1 for the t layer, Gj

is the reciprocal lattice vector obtained by counterclockwise
rotation of G1 ¼ ð4πÞ=ð

ffiffiffi
3

p
a0Þŷ by angle ðj − 1Þπ=3, a0 is

the monolayer TMD lattice constant, and V and ψ ,
respectively, characterize the amplitude and shape of the
potentials. Note that we have chosen the spatial averages of
Δb;t, which must be identical, as the zero of energy.
The d0 dependence of ΔT is most conveniently under-

stood by assuming a two-center approximation [7] for
tunneling between the metal dx2−y2 þ idxy orbitals, and
using a lowest-harmonic approximation. This leads to

ΔTðd0Þ ¼ wð1þ e−iG2·d0 þ e−iG3·d0Þ; ð3Þ

where w is a tunneling strength parameter. It is informative
to highlight three high-symmetry displacement values:
d0;n ¼ nða1 þ a2Þ=3 for n ¼ 0;#1, where a1;2 are the
primitive translation vectors of the aligned bilayer: a1 ¼
a0ð1; 0Þ and a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2Þ. For n ¼ 0 the metal

atoms of the two layers are aligned, Δt ¼ Δb ¼ 6V cosðψÞ
and ΔT ¼ 3w; the valence band maximum states are then
symmetric and antisymmetric combinations of the isolated
layer states. For n ¼ #1 the metal atoms in one layer are
aligned with the chalcogen atoms in the other layer, and ΔT
vanishes as a result of the threefold rotational symmetry
Ĉ3z. We determine the model parameters by fitting the
eigenvalues of H↑ðk ¼ 0Þ at the three displacements to
corresponding values from fully relativistic band structure
calculations using QUANTUM ESPRESSO [22]. We find that
ðV;ψ ; wÞ ≈ ð8 meV;−89.6°;−8.5 meVÞ for MoTe2.
Moiré Hamiltonian.—We construct the twisted bilayer

Hamiltonian by starting from an aligned bilayer with
d0 ¼ 0 and then rotating the bottom and top layers by
angles −θ=2 and þθ=2 around a metal site. (Any initial
displacement just shifts the moiré pattern globally [7,23].)
We take the origin of coordinates to be on this rotation axis
and midway between layers. With respect to this origin, the
bilayer has D3 point group symmetry generated by the
threefold rotation Ĉ3z around ẑ axis and a twofold rotation
Ĉ2y around ŷ axis that swaps the two layers. In a long-
period moiré pattern, the local displacement between the
two layers, approximated by θẑ × r, varies smoothly with
the spatial position r [21,24]. The moiré Hamiltonian is

H↑ ¼

 
− ℏ2ðk−κþÞ2

2m& þ ΔbðrÞ ΔTðrÞ

Δ†
TðrÞ − ℏ2ðk−κ−Þ2

2m& þ ΔtðrÞ

!

; ð4Þ

where ΔαðrÞ is obtained by replacing d0 in Eqs. (2)–(3)
with θẑ × r to account for the spatial variation of the local
inter-layer coordination. The moiré Hamiltonian is periodic
with the moiré period aM ¼ a0=θ. Because of the twist, the
þK points associated with the bottom and top layers are
rotated to different momenta, accounted for by the κ# shifts
in Eq. (4). We choose a moiré Brillouin zone (MBZ) in
which the κ# points are located at the MBZ corners, as
illustrated in Fig. 2(a).
To reveal the spatial structure of the Δα field, we define

the layer pseudospin magnetic field:

ΔðrÞ ¼ ðΔx;Δy;ΔzÞ≡
"
ReΔ†

T; ImΔ†
T;
Δb − Δt

2

#
: ð5Þ

As illustrated in Fig. 2(b), ΔzðrÞ vanishes along the links
that connect nearest-neighbor RM

M sites and has minimum
and maximum values at RX

M and RM
X . The in-plane

pseudospin field, which accounts for interlayer tunneling,
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Top layer Bottom layer

Δb/t(r) = 2v ∑
j=1,3,5

cos(Gj ⋅ r ± ψ)

ΔT(r) = w(1 + e−iG2⋅r + e−iG3⋅r)

First harmonic expansion

Continuum Hamiltonian

generate long lived spin and valley accumulations on sam-
ple boundaries. The physics discussed here provides a
route towards the integration of valleytronics and spin-
tronics in multivalley materials with strong spin-orbit
coupling and inversion symmetry breaking.

The physics in monolayers is essentially the same for
group-VI dichalcogenides MX2 (M ¼ Mo;W, X ¼ S; Se),
described below using MoS2 as an example. Structurally,
MoS2 can be regarded as strongly bonded 2D S-Mo-S
layers that are loosely coupled to one another by Van der
Waals interactions. Within each layer, the Mo and S atoms
form 2D hexagonal lattices, with the Mo atom being
coordinated by the six neighboring S atoms in a trigonal
prismatic geometry [Figs. 1(a) and 1(b)]. In its bulk form,
MoS2 has the 2H stacking order with the space group D4

6h,
which is inversion symmetric. When it is thinned down to a
monolayer, the crystal symmetry reduces to D1

3h, and in-
version symmetry is explicitly broken: taking the Mo atom
as the inversion center, an S atom will be mapped onto an
empty location. As a consequence, the effects we predict
here are expected only in thin films with odd number of
layers, since inversion symmetry is preserved in films with
even number of layers.

We start by constructing a minimal band model on the
basis of general symmetry consideration. The band struc-
ture ofMoS2, to a first approximation, consists of partially
filled Mo d bands lying between Mo-S s-p bonding and
antibonding bands [25]. The trigonal prismatic coordina-
tion of the Mo atom splits its d orbitals into three groups:
A1ðdz2Þ, Eðdxy; dx2$y2Þ and E0ðdxz; dyzÞ. In the monolayer

limit, the reflection symmetry in the ẑ direction permits
hybridization only between A1 and E orbitals, which opens
a band gap at the K and $K points [25], schematically

shown in Fig. 1(c). The group of the wave vector at the
band edges (K) is C3h and the symmetry adapted basis
functions are

j!ci ¼ jdz2i; j!"
vi ¼

1ffiffiffi
2

p ðjdx2$y2iþ i"jdxyiÞ; (1)

where the subscript cðvÞ indicates conduction (valence)
band, and " ¼ &1 is the valley index. The valence-band
wave functions at the two valleys, j!þ

v i and j!$
v i, are

related by time-reversal operation. To first order in k, the
C3h symmetry dictates that the two-band k ' pHamiltonian
has the form

Ĥ0 ¼ atð"kx#̂x þ ky#̂yÞ þ
!

2
#̂z; (2)

where #̂ denotes the Pauli matrices for the two basis
functions, a is the lattice constant, t the effective hopping
integral, and ! the energy gap. These parameters are
obtained by fitting to first-principles band structure calcu-
lations and are listed in Table. I for the four group-VI
dichalcogenides [26]. We note that the same effective
Hamiltonian also describes monolayer graphene with stag-
gered sublattice potential [15,16]. This is not surprising, as
both systems have the same symmetry properties. What
distinguishes MoS2 from graphene is the strong SOC
originated from the metal d orbitals. The conduction
band-edge state is made of dz2 orbitals and remains spin
degenerate at K points, whereas the valence-band-edge
state splits. Approximating the SOC by the intra-atomic
contribution L ' S, we find the total Hamiltonian given by

Ĥ ¼ atð"kx#̂x þ ky#̂yÞ þ
!

2
#̂z $ $"

#̂z $ 1

2
ŝz; (3)

where 2$ is the spin splitting at the valence band top
caused by the SOC and ŝz is the Pauli matrix for spin.
The spin-up ( " ) and spin-down ( # ) components are com-
pletely decoupled and sz remains a good quantum number.
We emphasize that the spin splitting does not depend on
the model details; it is a general consequence of inversion
symmetry breaking, similar to the Dresselhaus spin split-
ting in zinc-blende semiconductors [27]. Time-reversal

FIG. 1 (color online). (a) The unit cell of bulk 2H-MoS2,
which has the inversion center located in the middle plane. It
contains two unit cells of MoS2 monolayers, which lacks an
inversion center. (b) Top view of theMoS2 monolayer. Ri are the
vectors connecting nearest Mo atoms. (c) Schematic drawing of
the band structure at the band edges located at the K points.

TABLE I. Fitting result from first-principles band structure
calculations. The monolayer is relaxed. The sizes of spin split-
ting 2$ at valence-band edge were previously reported in the first
principle studies [12]. The unit is Å for a, and eV for t, !, and $.
"1 ("2) is the Berry curvature in unit of #A2, evaluated at $K
point for the spin-up (-down) conduction band.

a ! t 2$ "1 "2

MoS2 3.193 1.66 1.10 0.15 9.88 8.26
WS2 3.197 1.79 1.37 0.43 15.51 9.57
MoSe2 3.313 1.47 0.94 0.18 10.23 7.96
WSe2 3.310 1.60 1.19 0.46 16.81 9.39
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Wu, Lovorn, Tutuc, Martin & MacDonald, PRL (2019)has vortex and antivortex structures centered on RX
M and

RM
X . Here Rβ

α denotes high-symmetry sites at which α
atoms of the bottom layer are locally aligned with β atoms
of the top layer. It follows that ΔðrÞ forms a skyrmion
lattice, i.e., that the direction of the ΔðrÞ covers the unit
sphere once in each moiré unit cell (MUC). We have
explicitly confirmed this property by numerically evaluat-
ing the winding number [25]:

Nw ≡ 1

4π

Z

MUC
dr

Δ · ð∂xΔ × ∂yΔÞ
jΔj3 ¼ −1: ð6Þ

Skyrmion lattice pseudospin textures in position space
indicate [26] the possibility of topological electronic bands
in momentum space, although we will find that the
connection is not one to one.
Topological bands.—The moiré band structure is illus-

trated in Fig. 3(a) for a representative angle θ ¼ 1.2°. The
Ĉ2yT̂ symmetry of the Hamiltonian maps κþ → κ− and
therefore enforces degeneracy between these points. For the
two topmost moiré bands of the þK valley, wave functions
in the b (t) layer are concentrated near the RM

X (RX
M) sites,

which are Δb (Δt) maxima. Because of the layer-dependent
momentum shifts κ% in the kinetic energies, the moiré band
wave functions vary rapidly over the MBZ. In particular,
the wave function of the topmost moiré band at κþ and κ−
are respectively localized in layers b and t. By integrating
the Berry curvature F over the MBZ [27], we confirm that
the Chern numbers C of the two topmost þK valley moiré
bands in Fig. 3 are nontrivial (C ¼ %1) at θ ¼ 1.2°. The
corresponding bands at the −K valley must have the
opposite Chern numbers due to the T̂ symmetry. Spin-
valley locking implies that when the chemical potential is
in the gap between the two topmost bands, the twisted

homobilayer is not only a valley Hall insulator but
also a quantum spin Hall insulator, i.e., a topological
insulator [28,29].
To gain deeper insight into the topological bands, we

construct a tight-binding model. The real space distribution
of the wave functions suggests a two-orbital model for the
first two moiré bands:

HTB ¼
X

l;s

X0

RR0

t0c
†
RlscR0ð−lÞs

þ
X

l;s

X

R

X0

aM

t1eisκl·aMc
†
ðRþaMÞlscRls; ð7Þ

where s ¼ % denotes spin (equivalent to valley %K), and
l ¼ % labels orbitals localized in the bottom (þ1) and top
(−1) layers and centered around theRM

X andRX
M sites. The

two orbitals form a honeycomb lattice in Fig. 3(d). In
Eq. (7), the spin up and down sectors are decoupled
due to the spin-valley Uð1Þ symmetry of the low-energy
theory, and are related by T̂ symmetry. The first line of
Eq. (7) captures interlayer hopping between nearest neigh-
bors on the honeycomb lattice. Its form is constrained by
the requirements that the energy spectra have threefold

FIG. 2. (a) Brillouin zones of the bottom (blue) and top (red)
layers in a twisted bilayer, and the moiré Brillouin zone (black).
(b) TheþK-valley layer pseudospin skyrmion lattice in the moiré
pattern. The color map illustrates the variation of Δz, and the
arrows indicate Δx;y. The white lines outline a single moiré unit
cell. The dots indicate the high symmetry positionsRM

M,R
M
X , and

RX
M, where the local interlayer displacements are respectively

d0;0, d0;1, and d0;−1.
FIG. 3. (a) Moiré band structure at twist angle 1.2°. The system
is a topological insulator when the chemical potential (black
dashed line) is in the gap between the first and the second bands.
The red dashed lines are a tight-binding-model fit based on
the effective Hamiltonian Eq. (7) with t0 ≈ 0.29 meV and
t1 ≈ 0.06 meV. (b) Total density of states (DOS) as a function
of the number of holes per moiré unit cell (bottom) and per area
(top). (c) Berry curvature F for the first band in (a). Here the
typical magnitude of F is 3 orders of magnitude larger than that
in the monolayer [16,17]. (d) Illustration of the tight-binding
model (7). The yellow and green dots representRX

M andRM
X sites,

and together form a honeycomb lattice. The signs % refer to the
bond and spin dependent hopping phase factors expð%i2πs=3Þ.
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Layer Pseudospin Skyrmions

Δ = (ReΔT, ImΔT, 1
2 (Δb − Δt))

momentum shift between the two twisted layers. When the
bilayer is polarized by a vertical displacement potential,
the band Chern numbers are driven to zero before ΔðrÞ
becomes topologically trivial in real space. In partially
filled topological flat bands, interactions can, e.g., break
time-reversal symmetry to form quantum anomalous Hall
states.
Aligned bilayers.—To derive a moiré continuum

Hamiltonian, we start by analyzing the electronic structure
of an aligned bilayer [21]. Because the #K valleys are
related by time-reversal symmetry T̂ , we can focus on the
þK valley. In an AA stacked TMD homobilayer [Fig. 1],
the valence states at the þK valley valence band maximum
are mainly of dx2−y2 þ idxy orbital character, have spin up
(↑) along ẑ axis [16], and are separated from spin-down (↓)
states by strong spin-orbit splitting. Retaining only the spin
up valence-band states at theþK valley yields the two-band
k · p Hamiltonian [17],

H↑ðθ¼ 0;d0Þ¼
 
−ℏ2k2

2m& þΔbðd0Þ ΔTðd0Þ

Δ†
Tðd0Þ −ℏ2k2

2m& þΔtðd0Þ

!
; ð1Þ

with parameters that depend on the displacement d0
between the aligned layers. In Eq. (1), b and t refer to
bottom (b) and top (t) layers, k is momentum measured
from the þK point, m& is the valence band effective mass
that is approximately independent of d0 [17], Δb;t are layer-
dependent energies, and ΔT is an interlayer tunneling
amplitude. The dependence of Δα (α ¼ b, t, T) on d0 is
constrained by the symmetry properties of the bilayer.
The two-dimensional lattice periodicity of the aligned
bilayers implies that the Δα are periodic functions of d0.
A z ↔ −z mirror operation interchanges b and t and maps
displacement d0 to −d0, implying that Δtðd0Þ ¼ Δbð−d0Þ.
Threefold rotation around the ẑ axis requires that Δb andΔt
be invariant when d0 is rotated by 2π=3. These symmetry
constraints lead to the following two-parameter lowest-
harmonic parametrization:

Δlðd0Þ ¼ 2V
X

j¼1;3;5

cosðGj · d0 þ lψÞ; ð2Þ

where l ¼ 1 for the b layer and l ¼ −1 for the t layer, Gj

is the reciprocal lattice vector obtained by counterclockwise
rotation of G1 ¼ ð4πÞ=ð

ffiffiffi
3

p
a0Þŷ by angle ðj − 1Þπ=3, a0 is

the monolayer TMD lattice constant, and V and ψ ,
respectively, characterize the amplitude and shape of the
potentials. Note that we have chosen the spatial averages of
Δb;t, which must be identical, as the zero of energy.
The d0 dependence of ΔT is most conveniently under-

stood by assuming a two-center approximation [7] for
tunneling between the metal dx2−y2 þ idxy orbitals, and
using a lowest-harmonic approximation. This leads to

ΔTðd0Þ ¼ wð1þ e−iG2·d0 þ e−iG3·d0Þ; ð3Þ

where w is a tunneling strength parameter. It is informative
to highlight three high-symmetry displacement values:
d0;n ¼ nða1 þ a2Þ=3 for n ¼ 0;#1, where a1;2 are the
primitive translation vectors of the aligned bilayer: a1 ¼
a0ð1; 0Þ and a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2Þ. For n ¼ 0 the metal

atoms of the two layers are aligned, Δt ¼ Δb ¼ 6V cosðψÞ
and ΔT ¼ 3w; the valence band maximum states are then
symmetric and antisymmetric combinations of the isolated
layer states. For n ¼ #1 the metal atoms in one layer are
aligned with the chalcogen atoms in the other layer, and ΔT
vanishes as a result of the threefold rotational symmetry
Ĉ3z. We determine the model parameters by fitting the
eigenvalues of H↑ðk ¼ 0Þ at the three displacements to
corresponding values from fully relativistic band structure
calculations using QUANTUM ESPRESSO [22]. We find that
ðV;ψ ; wÞ ≈ ð8 meV;−89.6°;−8.5 meVÞ for MoTe2.
Moiré Hamiltonian.—We construct the twisted bilayer

Hamiltonian by starting from an aligned bilayer with
d0 ¼ 0 and then rotating the bottom and top layers by
angles −θ=2 and þθ=2 around a metal site. (Any initial
displacement just shifts the moiré pattern globally [7,23].)
We take the origin of coordinates to be on this rotation axis
and midway between layers. With respect to this origin, the
bilayer has D3 point group symmetry generated by the
threefold rotation Ĉ3z around ẑ axis and a twofold rotation
Ĉ2y around ŷ axis that swaps the two layers. In a long-
period moiré pattern, the local displacement between the
two layers, approximated by θẑ × r, varies smoothly with
the spatial position r [21,24]. The moiré Hamiltonian is

H↑ ¼

 
− ℏ2ðk−κþÞ2

2m& þ ΔbðrÞ ΔTðrÞ

Δ†
TðrÞ − ℏ2ðk−κ−Þ2

2m& þ ΔtðrÞ

!

; ð4Þ

where ΔαðrÞ is obtained by replacing d0 in Eqs. (2)–(3)
with θẑ × r to account for the spatial variation of the local
inter-layer coordination. The moiré Hamiltonian is periodic
with the moiré period aM ¼ a0=θ. Because of the twist, the
þK points associated with the bottom and top layers are
rotated to different momenta, accounted for by the κ# shifts
in Eq. (4). We choose a moiré Brillouin zone (MBZ) in
which the κ# points are located at the MBZ corners, as
illustrated in Fig. 2(a).
To reveal the spatial structure of the Δα field, we define

the layer pseudospin magnetic field:

ΔðrÞ ¼ ðΔx;Δy;ΔzÞ≡
"
ReΔ†

T; ImΔ†
T;
Δb − Δt

2

#
: ð5Þ

As illustrated in Fig. 2(b), ΔzðrÞ vanishes along the links
that connect nearest-neighbor RM

M sites and has minimum
and maximum values at RX

M and RM
X . The in-plane

pseudospin field, which accounts for interlayer tunneling,
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The continuum Hamiltonian describes electrons moving in a pseudospin 
(layer index) skyrmion texture!

Polarization-driven band topology evolution in twisted MoTe2 andWSe2
Xiao-Wei Zhang,1 Chong Wang,1 Xiaoyu Liu,1 Yueyao Fan,1 Ting Cao,1, � and Di Xiao1, 2, †
1Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA

2Department of Physics, University of Washington, Seattle, WA 98195, USA

Motivated by recent experimental observations of opposite Chern numbers in �-type twisted MoTe2 and
WSe2 homobilayers, we perform large-scale density-functional-theory (DFT) calculations with machine
learning force �elds to investigate moiré band topology from large to small twist angels in both materials.
We �nd that the Chern numbers of the moiré frontier bands change sign as a function of twist angle, and
this change is driven by the competition between the in-plane piezoelectricity and the out-of-plane ferro-
electricity. Our large-scale calculations, enabled by machine learning methods, reveal crucial insights into
interactions across di�erent scales in twisted bilayer systems. The interplay between atomic-level relaxation
e�ects and moiré-scale electrostatic potential variation opens new avenues for the design of intertwined
topological and correlated states.

The low-energy electronic structure of moiré superlat-
tices can be described by Bloch electrons moving in a pe-
riodic potential that varies on the scale of the moiré period.
The understanding of this moiré potential is pivotal to the
realization of various topological states [1–6], including the
much coveted zero-�eld fractional Chern insulators [7–12],
recently discovered in twisted transition metal dichalcog-
nide (TMD) homobilayers [13–16]. Given the structural
and chemical similarities among di�erent TMDs, it is intu-
itive to expect that the moiré potentials of twisted TMD ho-
mobilayers, and thus the moiré band topology, would also
be similar. However, recent experiments seem to suggest
the contrary: at the integer hole �lling of � = �1, optical
and transport measurements have found opposite Chern
numbers in 3.7� twisted bilayer MoTe2 (tMoTe2) [13–16]
and 1.23� twisted bilayer WSe2 (tWSe2) [6].
On the theory side, discrepancies in the Chern num-

bers were also found by two distinct approaches used to
study the moiré electronic structures. The �rst approach
involves deriving electronic structures from small unit cells
containing local stacking arrangements [17–22]. The sec-
ond approach relies on density functional theory (DFT) cal-
culations performed on reasonably sized moiré superlat-
tices [23–25]. Curiously, for tMoTe2, the Chern number
of the topmost spin-up (spin-down) moiré valence band is
found to be �1 (+1) within the local stacking approxima-
tion [20], whereas theDFT calculation conducted on a fully
relaxed structure with a 3.89� twist yield opposite Chern
numbers [25]. The latter is consistent with experimental
observations [26]. However, at smaller twist angles, the sys-
tem size poses a substantial challenge to DFT calculations,
and a direct comparison with experiments is currently un-
available.
In this Letter, we perform large-scale DFT calculations

for tMoTe2 and tWSe2 down to 1.25� twist angle. This is
made possible by using machine learning force �eld to ob-
tain the relaxed structures, which enables a comprehensive
exploration of the twist angle dependence of the moiré lat-
tice reconstruction. We show that the observed di�erence
in Chern numbers is due to the twist angle dependence of
the moiré potential. Speci�cally, we �nd that as the twist

angle varies, the location of the moiré potential maximum
shifts from the MX stacking region to the XM stacking re-
gion (see Fig. 1 for the de�nition of MX and XM), caus-
ing a sign change of the Chern number. The shift of the
moiré potential maximum is attributed to the competition
between the in-plane piezoelectricity and the out-of-plane
ferroelectricity, a mechanism associated with the broken
inversion symmetry in TMDs and absent in the local stack-
ing approximation. The large-scale calculations, enabled
by machine learning methods, reveal crucial insights into
interactions across di�erent scales in twisted bilayer sys-
tems. The interplay between atomic-level relaxation e�ects
andmoiré-scale electrostatic potential variation opens new
avenues for the design of intertwined topological and cor-
related states.

Following recent experiments [13–16], we will focus on
the valence bands of �-type twisted TMD homobilayers.
In these systems, the emergence of nontrivial band topol-
ogy can be understood as a consequence of the real-space
layer pseudospin texture. Within the continuum model,
the e�ective Hamiltonian for the� valley electrons is given

FIG. 1. The layer pseudospin skyrmion lattice. a, the �-valley
layer pseudospin�(�) skyrmion lattice, using parameters from the
local stacking approximation [20]. The color denotes ��(�) and
the arrow denotes ��,�(�). The black, green, and magenta dots
denote the three high symmetry local stacking sites,MM,XM, and
MX, respectively. b, similar to a but using parameters from the
DFT calculation [25].
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Topological	spin	textures	in	chiral	magnets:	from	2D	to	3D
Jiadong	Zang

Department	of	Physics	and	Astronomy,	University	of	New	Hampshire,	Durham,	NH	03824

This	grant	award	focuses	on	the	study	of	both	fundamental	physical	
property	and	material	realization	of	magnetic	spin	textures	with	
nontrivial	topology.	It	consists	of	three	major	part:	
Ø Novel	Skyrmionic textures	and	their	dynamics.	A	zoo	of	

skyrmion-like	topological	spin	textures	can	be	enabled	in	chiral	
magnets,	and	their	controlled	current	driven	dynamics	can	be	
designed	through	simulations.

Ø Investigating	transport	signatures	of	spin	textures.	Topological	
Hall	effect	(THE)	has	been	widely	used	for	identifying	
skyrmions.	We	have	identified	THE	in	various	systems.	
Alternative	mechanisms	to	THE-like	feature	have	been	
proposed.	

Ø Unlocking	3D	topological	hopfion	textures.	Energy	landscape,	
transport	signature,	and	novel	dynamics	of	hopfions	will	be	
discussed.

Theoretical	developments	in	this	project	are	also	supported	by	
intensive	experimental	collaborations.

Magnetic	Skyrmion

Novel	Skyrmionic Textures
Ø Skyrmion textures	with	arbitrary	topological	
charges	can	be	generated.	In	chiral	magnet	
nanoparticles	chiral	frustration	at	the	sample	
edges	are	important.

Ø Topological	Hall	effect	can	be	induced	in	
topological	matters,	but	special	care	must	be	
taken.	It	could	be	nonlinear	anomalous	Hall	effect	
from	field-induced	band	evolution.

Ø Magnetic	hopfion	is	a	new	class	of	3D	topological	
texture.	Its	recent	realization	might	lead	to	more	
exciting	research.	It	has	novel	current	driven	
dynamics	owing	to	its	3D	nature.	

Program	Scope Conclusions
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Future	Plans
Ø Exploration	of	other	exotic	topological	spin	
textures,	especially	the	composites	of	skyrmions,	
Bloch	points,	helical	stripes,	and	merons.

Ø Developing	3D	magnetic	imaging	as	a	special	
example	of	inverse	problem	in	general.		Using	
advanced	algorithm	such	as	machine	learning.	

Ø Clarifying	topological	Hall	effect	in	various	
systems.	Studying	transport	signatures	of	
topological	textures.

Skyrmionic vortex	in	chiral	tetrahedron

Magnetic skyrmion is a nanostructured spin texture in which
magnetic moments point in all directions wrapping a unit
sphere. There exists one-to-one correspondence between a
skyrmion and a unit sphere. It has been realized in chiral
magnets such as MnSi and FeGe.

Crossover	from	THE	to	QAHE
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Emergent Magnetic Field

diagonal, ~Q k h111i, by higher order spin-orbit coupling
terms, which represent the weakest scale.

Under magnetic field, the helical wave vector ~Q is
unpinned from the h111i directions and aligns parallel to
the applied magnetic field for B> Bc1 ! 0:1 T. The mag-
netic state above Bc1 is also referred to as a conical state
because it consists of a superposition of a helical modula-

tion ~MQ with a uniform magnetization ~M0, where ~Q k ~M0.
The helical modulation is suppressed altogether for a mag-
netic field exceeding Bc2ðT ! 0Þ ! 0:6 T. In the vicinity
of Tc, a small phase pocket has been observed referred to as
the A phase [26]. The specific heat, susceptibility, and
neutron scattering establish that the A phase is a distinct
phase with a first-order phase transition separating it from

the conical phase. It had further been established that ~Q in
the A phase aligns perpendicular to the applied magnetic
field [27,28]; however, neither had the full spin structure
been resolved, nor was there a plausible explanation for
~Q ? ~B prior to our study [9].
The Hall effect and the magnetoresistance in MnSi have

been studied before for temperatures below Tc and mag-
netic field up to 5 T [29]. These measurements were
analyzed in terms of the sum of normal and anomalous
Hall currents, !xy ¼ !N

xy þ !A
xy, respectively. This con-

trasts the conventional Karplus-Luttinger Ansatz of a
sum of normal and anomalous Hall resistivities, "xy ¼
R0Bþ#0RsM. It was, in particular, noticed that below
Tc,!

A
xy ¼ SHM, where SH is independent of T and Bwhile

!N
xy ! &R0B="

2
xx changes by a factor of 100 between 5 K

and Tc, reflecting the strong T-dependence of the resistiv-
ity "xx.

For our study, single-crystal samples were cut from an
ingot that had been studied before by various bulk proper-
ties, SANS [9] and Larmor diffraction [30]. The samples
were oriented with x-ray Laue diffraction and polished to
size. Sample 1 was oriented for measurements with B
parallel [110] and electric current I parallel [001] and

sample 2 for ~B k ½111( and I k ½1!10(. The sample dimen-
sions as determined with a light microscope were 1)
1:5) 0:13 mm3 and 1:6) 3:1) 0:15 mm3 for sample 1
and 2, respectively. Quite generally, the geometry factor in
studies of this kind can be determined only quite inaccur-
ately. Because MnSi has a cubic structure and Tc is small as
compared with room temperature, we determined the ge-
ometry factors from the longitudinal and Hall resistivities
at ambient conditions, "xxð300 K; 0 TÞ ¼ 180 #" cm and
"xyð300 K; 8 TÞ ¼ &126 n" cm, respectively [29,31,32]
(note the difference of units for "xy). Data reported in
this Letter were corrected for demagnetizing effects, where
the demagnetizing factors were determined consistently
from measurements of the dc magnetization for various
sample dimensions and theoretical estimates.

The resistivity and the Hall effect were measured simul-
taneously in a standard six terminal configuration. Data
were recorded down to 2.5 K at magnetic fields up to 9 T.

Symmetric and antisymmetric signal contributions in *B
were determined, where data shown here for "xy represent
the antisymmetric part of the signal at the Hall contacts.
We note that our Hall data are perfectly consistent with
previous studies [29]. However, we have achieved a much
better resolution, making possible the observation of the
additional anomalous contributions in the A phase (for
further details see Ref. [32]).
Shown in Fig. 1 is the Hall resistivity "xy of MnSi for

~B k ½110( and I k ½001(. At room temperature, the behav-
ior is dominated by the normal Hall effect, where we
observe essentially no T dependence. In the conventional
interpretation, the slope of the Hall resistivity corresponds
to a nominal charge carrier concentration n ¼ ðR0eÞ&1 ¼
3:78) 1022 cm&3 [33]. The overall behavior of "xy at low
T is fairly complex, but perfectly consistent with Ref. [29].
Shown in Fig. 2(a) is "xy as measured in the regime

of the A phase, where a small additional contribution
appears. We have approximated the signal linearly from
below to above the A phase and subtracted this part of the
total signal. The resulting contribution #"xy is shown in
Fig. 2(b), where the curves have been shifted vertically for
better visibility [34]. In Fig. 3, we show a rough estimate of
the magnitude of the contribution, where we plot the peak
value. The error bars represent a conservative estimate of
systematic errors. Within experimental uncertainties, we
find #"xy ! 4:5* 1 n" cm.
As a final test, we find remarkable agreement between

the field and T range in which we observe #"xy with the
regime of the A phase inferred from the ac susceptibility
reported in [35] (Fig. 4). This clearly confirms that the
additional Hall signal is correctly attributed to the A phase.
The key features of #"xy observed in the A phase may be
summarized as follows: (i) the sign of the signal is opposite
to the normal Hall effect; (ii) the magnitude of the signal is
roughly #"xy ! 4:5 n" cm; (iii) the signal is roughly the

FIG. 1 (color online). Hall resistivity for single crystal MnSi,
where the magnetic field B was applied parallel to [110] and
the current was applied along [001]. Data for magnetic field
B k ½111( and current I k ½1!10( (not shown) are the same, as
expected for a cubic material.
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Magnetic hysteresis loops of the FeGe films were
measured using a superconducting quantum interface
device magnetometer at 5 to 300 K. Figure 3(a) shows
the out-of-plane hysteresis loop for the 36 nm FeGe film at
5 K. The three FeGe films were patterned into a standard
Hall bar structure with a width of 0.5 mm. Longitudinal
(ρxx) and Hall (ρxy) resistivity measurements were taken
using a physical property measurement system. A constant
current density of 2000 A=cm2 is applied while longi-
tudinal and Hall voltages were measured to obtain ρxx and
ρxy. Figure 3(b) shows ρxy at 5 K for the 36 nm film, where
we note three features: (1) a linear background at large
fields (>2 T), (2) a magnetic reversal behavior at inter-
mediate fields that follows the magnetization hysteresis
loop, and (3) a Hall hysteresis loop within !3000 Oe that
does not follow the magnetization hysteresis loop. These
three features can be attributed to the ordinary Hall effect,
anomalous Hall effect, and topological Hall effect, respec-
tively. The total Hall resistivity is a combination of these
three terms [14,15]: ρxy ¼ RoH þ RsM þ ρTH, where Ro

and Rs are the ordinary and anomalous Hall coefficients,
respectively,M the out-of-plane magnetization, and ρTH the
topological Hall resistivity. When a current is driven
through the FeGe film, the electrons experience an emer-
gent electromagnetic field through interaction with the
Skyrmions [3]. Consequently, the electrons are scattered off
the Skyrmions in a direction opposite of the anomalous
Hall effect, generating a topological Hall voltage [5,23,24].
In Fig. 3(b), the coercivity (Hc) of the Hall hysteresis loop
is 2400 Oe, which is much larger than theHc ¼ 240 Oe for
the magnetization hysteresis in Fig. 3(a); meanwhile, the
Hall resistivity switches sign before reaching a zero field.
These are signatures of the topological Hall effect [16].

The anomalous Hall coefficient can be modeled into a
power-law function of ρxx, Rs ¼ bρ2xx þ cρxx, where the
quadratic bρ2xx term is due to a scattering independent
mechanism and the linear cρxx term is caused by skew
scattering [23,25]. A log-log plot of the anomalous Hall
resistivity (ρAH) vs ρxx at jHj ¼ 4 T reveals a linear
dependence with a slope of 2.3, suggesting that the
anomalous Hall effect is dominated by the scattering
independent mechanisms and the cρxx term can be
neglected [25] (see Supplemental Material [22] for details).
In addition, all FeGe films show very small magnetoresist-
ance (<0.7% at fields up to 7 T for all samples); thus Rs is
approximately magnetic field independent. At jHj ≥ 2 T,
the FeGe films are in the saturated ferromagnetic state and

FIG. 2. (a) STEM image of a 100 nm FeGe thin film viewed
along the FeGe h110i axis near the interface with Si(111).
A 1.2–1.5 nm interfacial transition region is observed between
the diamond structure of Si and the B20 structure of FeGe. (b) A
high resolution STEM image of the FeGe film reveals the B20
ordering of Fe and Ge atoms. (c) Schematic of the cubic lattice
and the h110i projection of the B20 structure.
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FIG. 3. (a) Out-of-plane magnetic hysteresis loop of the 36 nm
FeGe film at 5 K. (b) Total Hall resistivity (ρxy) of the 36 nm
FeGe film with a coercivity of 2400 Oe (T ¼ 5 K) reveals a
dominant topological Hall effect, which has a path opposite of the
expected anomalous Hall effect. (c) The topological Hall resis-
tivity (ρTH) hysteresis loops for the 36, 65, and 100 nm FeGe
films at 5 K show a clear Skyrmion phase, which exhibit
substantial remanent values at H ¼ 0, demonstrating robust
Skyrmion formation in the absence of magnetic field. (d) Semilog
plot of the temperature dependence of the maximum ρTH for the
three samples. (e) The squareness of the topological Hall
resistivity ρTHðH ¼ 0Þ=ρTHðmaxÞ for the three FeGe films
between 5 and 275 K, reflecting the stability of Skyrmions at
zero field.
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THE in MnSi (top two) and FeGe (right)

THE features a hump 
on the !!" − # curve

Emergent magnetic field induces 
Hall effect of itinerant electrons
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From	skyrmionium	to	skyrmion bundles

Numerical simulation indicates stable skyrmionium and skyrmion
bundle states in chiral magnets. Experimental realization shows 
cascading topological charge transition in skyrmion bundles

Integration of simulation and 
electron holography reveals 
skyrmionic vortex in FeGe
nano-tetrahedron. Formation 
of the vortex is enabled by 
chiral frustration at the edges.ARTICLES NATURE MATERIALSARTICLES NATURE MATERIALS

Methods
Molecular beam epitaxy growth of TI sandwich heterostructure. The magnetic 
TI sandwich heterostructure growth was carried out using a Veeco/Applied EPI 
molecular beam epitaxy system with a vacuum of ~2 × 10−10 mbar. The heat-
treated insulating SrTiO3(111) substrates were outgassed at ~53 °C for 1 h before 
the growth of the TI sandwich heterostructures. High-purity Bi (5 N), Sb (6 N), 
Cr (5 N) and Te (6 N) were evaporated from Knudsen effusion cells. During 
growth of the TI, the substrate was maintained at ~240 °C. The flux ratio of Te per 
(Bi + Sb) was set to be >10 to prevent Te deficiency in the samples. The magnetic 
or non-magnetic TI growth rate was at ~0.25 QL min–1. Each layer of the sandwich 
heterostructure was grown with different Bi/Sb ratios by adjusting their Knudsen-
cell temperatures to tune the chemical potential close to its charge neutral point. 
Finally, to avoid possible contamination, a 10 nm thick Te layer was deposited 
at room temperature on top of the sandwich heterostructures prior to their 
removal from the molecular beam epitaxy chamber for ex situ transport and other 
characterization measurements.

Hall-bar device fabrications. The magnetic TI sandwich heterostructures grown 
on 2 mm × 10 mm heat-treated insulating SrTiO3(111) were scratched into a Hall 
bar geometry using a computer-controlled probe station. The effective area of 
the Hall bar device was ~1 mm × 0.5 mm. The electrical ohmic contacts for the 
transport measurements were made by pressing indium spheres on the Hall bar. 
The bottom gate electrode was prepared through an indium foil on the back side of 
the SrTiO3 substrate.

Transport measurements. Transport measurements were conducted using both a 
Quantum Design Physical Property Measurement System (PPMS; 2 K, 9 T) and a 
Leiden Cryogenics dilution refrigerator (10 mK, 9 T) with the magnetic field applied 
perpendicular to the film plane. The bottom gate voltage was applied using a Keithley 
6430. The excitation currents in the d.c. PPMS measurements (≥2 K) was 1 μA. We 
used a PicoWatt AVS-47 a.c. resistance bridge to conduct the dilution refrigerator 
measurements (<2 K) with a low excitation current (1 nA) to suppress the heating 
effect. The results reported here were reproduced on two samples measured in the 
dilution refrigerator and more than ten samples measured in the PPMS. All the 
transport results shown here were anti-symmetrized as a function of the magnetic 
field. More transport results are given in the Supplementary Information.

Theoretical calculations. The QW Hamiltonian is 
HQW ¼ ε0 kð Þ þ N kð Þτz þ A kyσx % kxσy

! "
τx þ Uτx

I
, where Pauli matrices σ stand 

for spins and τ stand for two orbitals, and ε = C0 + C1k2 and N = N0 + N2k2. Here C0, 
C1, N0 and N1 are material dependent parameters. Different sets of QW states differ 
by different C0 and N0 values. The dispersion in Fig. 4c takes values of C0 = 0.145 eV, 
C2 = 10.0 eV Å2, N0 = −0.18 eV, N2 = 15.0 eV Å2, A = 3.0 eV Å and U = 0.02 eV. 
Coupling of the QW electrons to magnetization M is simply HQW

Zeeman ¼ "Mσ
I

. 
However, the SSs have the Hamiltonian Hss ¼ vF kyσx " kxσy

! "
τz þ Uτz þm0σx

I
, 

where νF is Fermi velocity, m0 is the mass of electron, σ stands for spins, but  
τ stands for two surfaces instead. U is the asymmetric potential applied to two 

surfaces. The coupling to magnetizations Mt and Mb on the top and bottom 
surfaces, respectively, is HSS

Zeeman ¼ Mtσ 1þ τzð Þ=2þMbσ 1% τzð Þ=2
I

. In Fig. 4c, we 
use m0 = 0.005 eV, vF = 3.0 eV Å and U = 0.02 eV.

Data availability
The data that support the findings of this study are available from C.-Z.C. on 
reasonable request.

Code availability
The code for theoretical calculations of spin susceptibility and DM interaction and 
simulations of the quantum transport simulation through a single chiral magnetic 
domain wall from C.L. and J.Zang on reasonable request.
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However, the SSs have the Hamiltonian Hss ¼ vF kyσx " kxσy
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where νF is Fermi velocity, m0 is the mass of electron, σ stands for spins, but  
τ stands for two surfaces instead. U is the asymmetric potential applied to two 

surfaces. The coupling to magnetizations Mt and Mb on the top and bottom 
surfaces, respectively, is HSS
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Ⅵ. Theoretical calculations for the spin susceptibility in magnetic TI 

      In the main text and the “Theoretical calculations” of Method Section, we have introduced 

our model Hamiltonian including both the bulk quantum well (QW) states ( 𝐻𝑄𝑊 ) and the 

topological surface states (SS) (𝐻𝑆𝑆). Both states are coupled to the sample magnetization M 

through the Zeeman type of coupling 𝐻𝑍𝑒𝑒𝑚𝑎𝑛 = −𝐽𝐻𝑴 ⋅ 𝝈 . We note that 𝐻𝑄𝑊  and 𝐻𝑆𝑆 are 

actually related to each other by a unitary transformation. Using the unitary transformation 𝑇 =

(𝜎𝑧 + 𝜎𝑥)/√2, the 𝐻𝑆𝑆 can be rotated to the same form as the 𝐻𝑄𝑊, as 𝑇+𝐻𝑆𝑆𝑇 = 𝑣𝐹(𝑘𝑦𝜎𝑥 −

𝑘𝑥𝜎𝑦)𝜏𝑥 + 𝑈𝜏𝑥 + 𝑚0𝜎𝑧 and   𝑇+𝐻𝑍𝑒𝑒𝑚𝑎𝑛𝑇 = 𝑴+ ⋅ 𝝈 + 𝑴− ⋅ 𝝈𝜏𝑥 , where 𝑴± = (𝑴𝑡 ± 𝑴𝑏)/2 . 

As the overall spin chirality is concerned here, only 𝑴+ is considered, so the Zeeman coupling 

on the SS is 𝐻𝑍𝑒𝑒𝑚𝑎𝑛
𝑆𝑆 = −𝐽𝐻𝑴+ ⋅ 𝝈, while that on QW states are simply 𝐻𝑍𝑒𝑒𝑚𝑎𝑛

𝑄𝑊 = −𝐽𝐻𝑴 ⋅ 𝝈. 

We will use the rotated basis for SS in the following calculations. 

 

Figure S17 | Comparison between diagonal and off-diagonal susceptibilities. 𝜒𝑥𝑥, 𝜒𝑧𝑧, and 

𝜒𝑥𝑧 for (a) topological SSs and (b) bulk QW states. The chemical potential P is at 0.02eV.       

      Next, we will present a systematic study on the spin susceptibility χαβ (α, β = x, y, z) through 

the linear response theory 𝜒𝛼𝛽(𝒒) = 𝑇
2𝑉

Tr[𝐺0(𝒒 + 𝒌, 𝑖𝜔𝑚)Γ𝛼𝐺0(𝒌, 𝑖𝜔𝑚)Γ𝛽] , where 𝐺0  is the 

unperturbed Green’s function, and the spin operator 𝚪 is 𝚪 = −𝐽𝐻𝝈. Using Matsubara frequency 

summation, the spin susceptibility 𝜒𝛼𝛽 can be given by  

𝜒𝛼𝛽 = 1
2

∫ 𝑑2𝑘 ∑ 𝑓𝑚(𝒌)−𝑓𝑛(𝒌+𝒒)
𝑖𝜔+𝜀𝑚(𝒌)−𝜀𝑛(𝒌+𝒒)

Tr[𝑃𝑚(𝒌 + 𝒒)Γ𝛼𝑃𝑛(𝒌)Γ𝛽]𝑚,𝑛                                (S1) 

where m, n are band indices,  𝑓 = 1/[1 + exp(𝜀 − 𝜇)/𝑘𝐵𝑇] is the Fermi-Dirac distribution, and 

𝑃𝑚(𝒌) is the projection operator. 𝜔 is chosen to be a small number representing a tiny scattering 

rate responsible for the potential disorder effect. In our calculations, the temperature is T=3meV 

By gating (magnetic) topological insulator 
multilayers, concurrence of quantum 
anomalous Hall effect and THE was 
addressed. Variation of the THE resistivity is 
reproduced by linear response theory on 
quantum well and surface state Hamiltonians
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Electrons travel in a spin texture experiences an 
effective magnetic field, which can result in 
Landau-level like Bloch bands



Topological Moire Bands

➤ Non-zero Chern number comes from layer pseudo-spin skyrmions 

➤ Two time-reversal copies with opposite spins and opposite Chern numbers 
originating from the two valleys (K and K’) 

➤ Interaction can then drive the system into various symmetry breaking/topological 
states

has vortex and antivortex structures centered on RX
M and

RM
X . Here Rβ

α denotes high-symmetry sites at which α
atoms of the bottom layer are locally aligned with β atoms
of the top layer. It follows that ΔðrÞ forms a skyrmion
lattice, i.e., that the direction of the ΔðrÞ covers the unit
sphere once in each moiré unit cell (MUC). We have
explicitly confirmed this property by numerically evaluat-
ing the winding number [25]:

Nw ≡ 1

4π

Z

MUC
dr

Δ · ð∂xΔ × ∂yΔÞ
jΔj3 ¼ −1: ð6Þ

Skyrmion lattice pseudospin textures in position space
indicate [26] the possibility of topological electronic bands
in momentum space, although we will find that the
connection is not one to one.
Topological bands.—The moiré band structure is illus-

trated in Fig. 3(a) for a representative angle θ ¼ 1.2°. The
Ĉ2yT̂ symmetry of the Hamiltonian maps κþ → κ− and
therefore enforces degeneracy between these points. For the
two topmost moiré bands of the þK valley, wave functions
in the b (t) layer are concentrated near the RM

X (RX
M) sites,

which are Δb (Δt) maxima. Because of the layer-dependent
momentum shifts κ% in the kinetic energies, the moiré band
wave functions vary rapidly over the MBZ. In particular,
the wave function of the topmost moiré band at κþ and κ−
are respectively localized in layers b and t. By integrating
the Berry curvature F over the MBZ [27], we confirm that
the Chern numbers C of the two topmost þK valley moiré
bands in Fig. 3 are nontrivial (C ¼ %1) at θ ¼ 1.2°. The
corresponding bands at the −K valley must have the
opposite Chern numbers due to the T̂ symmetry. Spin-
valley locking implies that when the chemical potential is
in the gap between the two topmost bands, the twisted

homobilayer is not only a valley Hall insulator but
also a quantum spin Hall insulator, i.e., a topological
insulator [28,29].
To gain deeper insight into the topological bands, we

construct a tight-binding model. The real space distribution
of the wave functions suggests a two-orbital model for the
first two moiré bands:

HTB ¼
X

l;s

X0

RR0

t0c
†
RlscR0ð−lÞs

þ
X

l;s

X

R

X0

aM

t1eisκl·aMc
†
ðRþaMÞlscRls; ð7Þ

where s ¼ % denotes spin (equivalent to valley %K), and
l ¼ % labels orbitals localized in the bottom (þ1) and top
(−1) layers and centered around theRM

X andRX
M sites. The

two orbitals form a honeycomb lattice in Fig. 3(d). In
Eq. (7), the spin up and down sectors are decoupled
due to the spin-valley Uð1Þ symmetry of the low-energy
theory, and are related by T̂ symmetry. The first line of
Eq. (7) captures interlayer hopping between nearest neigh-
bors on the honeycomb lattice. Its form is constrained by
the requirements that the energy spectra have threefold

FIG. 2. (a) Brillouin zones of the bottom (blue) and top (red)
layers in a twisted bilayer, and the moiré Brillouin zone (black).
(b) TheþK-valley layer pseudospin skyrmion lattice in the moiré
pattern. The color map illustrates the variation of Δz, and the
arrows indicate Δx;y. The white lines outline a single moiré unit
cell. The dots indicate the high symmetry positionsRM

M,R
M
X , and

RX
M, where the local interlayer displacements are respectively

d0;0, d0;1, and d0;−1.
FIG. 3. (a) Moiré band structure at twist angle 1.2°. The system
is a topological insulator when the chemical potential (black
dashed line) is in the gap between the first and the second bands.
The red dashed lines are a tight-binding-model fit based on
the effective Hamiltonian Eq. (7) with t0 ≈ 0.29 meV and
t1 ≈ 0.06 meV. (b) Total density of states (DOS) as a function
of the number of holes per moiré unit cell (bottom) and per area
(top). (c) Berry curvature F for the first band in (a). Here the
typical magnitude of F is 3 orders of magnitude larger than that
in the monolayer [16,17]. (d) Illustration of the tight-binding
model (7). The yellow and green dots representRX

M andRM
X sites,

and together form a honeycomb lattice. The signs % refer to the
bond and spin dependent hopping phase factors expð%i2πs=3Þ.
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Theory says there should be flat Chern band 
and fractional quantum anomalous Hall effect 

Experiment found it…Where is the problem?



Puzzle I

Foutty…Feldman et al, Science (2024)

Twisted WSe2 (1.23 )∘

66 | Nature | Vol 622 | 5 October 2023

Article

fractional charge excitations37 and Abelian topological orders without 
Landau-level formation.

We have also performed exact diagonalization calculations based on 
realistic material parameters, the results of which are consistent with 
the two observed FQAH states38,39 (Methods). Figure 3e shows that the 
threefold degenerate ground states at v = −2/3 evolve into each other 
upon flux insertion. The many-body Chern numbers for v = −2/3 and 
v = −3/5 are found to be C = −2/3 and C = −3/5, respectively. Calculations 

also reveal that the Chern gap of the −3/5 state is smaller than that of 
the −2/3 state, with the optimal twist angle for FQAH near 3.5° (ref. 38). 
All theory results are consistent with our experimental observations.

Electrically controlled topological phases
Because the sublattice orbitals of the honeycomb lattice are localized in 
opposite layers of the twisted bilayer, the application of a perpendicular 
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Fig. 3 | Evidence of integer and fractional QAH states. a, PL intensity plot 
versus v and photon energy at selected magnetic fields. The dashed lines  
are guides to the eye. b, Spectrally integrated PL intensity versus µ0H and 
carrier density n, that is, an optical Landau fan diagram. c, Wannier diagram 
corresponding to a C = −1 QAH state at v = −1 (black line), a C = −2/3 FQAH state at 
v = −2/3 and a C = −3/5 FQAH state at v = −3/5 (blue lines), with C equal to the Hall 
conductance in the units of e2/h. States are marked by (C, v). Overlaid data and 
error bars are the extracted carrier densities of the three insulating states 

(Methods). Extended Data Fig. 5 shows similar data from a spot with a local 
twist angle of about 3.57°, which shows the −3/5 state persisting down to zero 
magnetic field. d, Integrated PL intensity versus µ0H and n showing correlated 
insulating states at electron filling. These states are dispersionless with 
magnetic field and topologically trivial. e, Exact diagonalization calculation of 
the ground state energy EG at v = −2/3, showing the evolution of the three nearly 
degenerate ground states upon flux insertion Φ.

Twisted MoTe2 (3.9 )∘

Cai…Xu, Nature (2023)

At , the Chern numbers in 3.9 degree tMoTe2 and 1.2 degree tWSe2 
have opposite sign

ν = − 1

The difference probably comes from angle 
dependence, not material difference



Puzzle II

PHYSICAL REVIEW RESEARCH 3, L032070 (2021)
Letter

Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices

Heqiu Li ,1 Umesh Kumar ,2 Kai Sun,1 and Shi-Zeng Lin 3

1Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
2Theoretical Division, T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 4 January 2021; revised 15 June 2021; accepted 24 August 2021; published 22 September 2021)

The Moiré superlattice realized in two-dimensional heterostructures offers an exciting platform to access
strongly correlated electronic states. In this work, we study transition metal dichalcogenides (TMD) Moiré
superlattices with time-reversal symmetry and nontrivial spin/valley-Chern numbers. Utilizing realistic material
parameters and the method of exact diagonalization, we find that at a certain twisting angle and fractional
filling, gapped fractional topological states, i.e., fractional Chern insulators, are naturally stabilized by simply
introducing the Coulomb repulsion. In contrast to fractional quantum Hall systems, where the time-reversal
symmetry has to be broken explicitly, these fractional states break the time-reversal symmetry spontaneously.
We show that the Chern number contrasting in the opposite valleys imposes a strong constraint on the nature of
fractional Chern insulator and the associated low-energy excitations.
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Introduction. When two layers of two-dimensional materi-
als are placed on top of each other with slight misalignment
it creates a superlattice with periodicity much larger than the
atomic lattice parameter. Because of the large lattice peri-
odicity, one can fill or empty the entire band by electrode
gating. This Moiré superlattice provides a tunable platform
to control the electronic band structure [1,2], and therefore
enables access to a plethora of interesting quantum states.
Because the bandwidth in these systems can be tuned to be
extremely narrow [2], these Moiré superlattices open up a
new pathway to stabilize various strongly correlated phases,
such as superconductivity and correlated insulators [3–27].
Furthermore, such electronic band structure can also be topo-
logically nontrivial, e.g., with a nonzero integer Chern number
[28–32]. Combined with their strong coupling nature, such
Moiré superlattices offer a promising route to realize the long-
sought fractionalized topological order [33–39].

Recently, gapped electronic states at various fractional
fillings (e.g., 1/3) were observed in transition metal
dichalcogenide (TMD) Moiré superlattices, e.g., WSe2/WS2
[18,40–43]. In general, gapped electronic states at fractional
filling may have two origins: (i) charge order that sponta-
neously breaks the translational symmetry and (ii) fractional
topological order, e.g., fractional Chern insulators (FCI)
[44–51]. In these TMD Moiré superlattices, the observed
gapped states were interpreted as Wigner crystals of electrons
because the underlying single-particle bands are topologically
trivial [52].
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Encouraged by such exciting experimental progress, here
we explore the feasibility of the second category in TMD
Moiré superlattices. In particular, we focus on systems like
MoTe2, which may host topologically nontrivial bands with
nonzero spin/valley-Chern numbers [53]. In contrast to a
partially filled Chern band [44–51], because these systems
preserve the time-reversal symmetry, two types of fractional
states are, in principle, allowed (i) time-reversal invariant
fractional topological insulators [54] and (ii) FCIs via sponta-
neously breaking the time-reversal symmetry. The key focus
of this study is whether Coulomb repulsion could stabilize
some of these fractional states in TMD Moiré superlattices.

In this work, we show that by simply increasing the
Coulomb interaction strength in such TMD Moiré superlat-
tices, the system undergoes a quantum phase transition that
spontaneously breaks the time-reversal symmetry by polar-
izing electrons into one of the two valleys. Further increase
of Coulomb interaction will trigger a second quantum phase
transition and stabilize a FCI at a fractional filling. For ex-
citations, our numerical studies observe both (intravalley)
fractional excitations from the fractional topological order and
(intervalley) valley-wave excitations from the spontaneous
symmetry breaking. We argue that the symmetry breaking
state and low-energy excitations are constrained by the valley
contrasting Chern number in the TMD Moiré superlattice.

Model. We consider twisted homobilayer TMD materials.
For each single layer, the low-energy electronic states reside
at the valence band maxima at ±K valleys. Contrary to bi-
layer graphene systems where the valley and spin degrees
of freedom are both present, in TMD each valley in the top
valence band has fixed spin orientation due to strong spin-
orbit coupling and the broken inversion symmetry [55]. With
a small twist angle θ between two layers, the +K valley for
the top and bottom layers are shifted to Kt and Kb in the
Moiré Brillouin zone (MBZ), respectively, [Fig. 1(b)]. For
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FIG. 2. Numerical diagonalization results for eight particles in
4 × 6 Moiré lattice. We choose θ = 1.38◦ and U = 1.38 meV. The
bandwidth at this twist angle is W = 0.083 meV. Here N = N1 ×
N2/3 is the number of particles. (a) Energy spectrum with three
nearly degenerate ground states in each valley. (b) The occupation
number of single particle states n(k1, k2) for each of the three many-
body ground states. The nearly uniform distribution of n(k1, k2)
suggests the ground state is an incompressible liquid. (c) Under
flux insertion along k2 direction, the ground states evolve into each
other. (d) Particle entanglement spectrum (PES) for the separation of
NA = 4 particles.

single-particle states, consistent with the fact that the ground
state is an incompressible liquid. The spectrum evolution un-
der flux insertion along the k2 direction is shown in Fig. 2(c).
The excitation gap is maintained throughout the flux insertion
process.

The topological nature of the ground states are further
confirmed by our calculation of the particle entanglement
spectrum (PES) [60]. To compute PES, we divide the N par-
ticles into two collections of NA and NB = N − NA particles
and trace out NB particles to get the reduced density matrix
ρA. The PES levels ξ are obtained from the logarithm of
eigenvalues of ρA, and are labeled by the total momentum of
the remaining NA particles, as shown in Fig. 2(d). There is
a clear entanglement gap with 2730 levels below the gap for
NA = 4, consistent with the counting of quasihole excitation
in the ν = 1/3 FCI [60].

To examine the finite-size effect, we study the scaling of
the many-body gap % with various system sizes. For a genuine
FCI, % remains finite in the thermodynamic limit when both
N1 and N2 approach infinity. However, % should vanish if only
one of N1 or N2 approaches infinity because this limit is a
one-dimensional system which should not support FCI [47].
This is confirmed in Fig. 3(a), which shows % decreases when
N1 is fixed at 3 and N2 increases from 4 to 8, but % increases
when the system size changes from 3 × 8 to 4 × 6.

We then map out the phase diagram at ν = 1/3 filling as a
function of the interaction strength U , which can be controlled
by distance between the electrodes and the Moiré superlattice
in experiments and the dielectric constant ε. The results are
shown in Fig. 3(b). We find a valley nonpolarized Fermi liquid
at a small 1/ε corresponding to a small U , a Fermi liquid
with valley polarization at an intermediate interaction, and
the FCI phase with valley polarization at strong interaction.

(a) (b)

FIG. 3. (a) The many-body gap % for various system sizes at v =
1/3 filling. The interaction strength is fixed to be U = 1.38 meV. The
increase of % in 4 × 6 system suggests the gap persists in the two-
dimensional thermodynamic limit. (b) The phase diagram for Fermi
liquid (FL), FL with valley polarization (VP) and fractional Chern
insulator (FCI) at different interaction strength U (ε) = e2

4πεε0aM
and

twisted angle θ . The dashed line corresponds to U (ε) = %12, above
which the interaction starts to mix different bands and the single-
band approximation breaks down.

Depending on the twisted angle θ , which controls the band-
width, the valley nonpolarized Fermi liquid can transit directly
to FCI with valley polarization or through an intermediate
Fermi liquid with valley polarization. The phase transition
between the valley-polarized Fermi liquid and FCI can be
described by Ginzburg-Landau theory with a Chern-Simons
term [57]. The direct transition occurs near θ = 1.38◦ where
the single-particle Moiré band has the largest gap to band-
width ratio [see Fig. 1(d)]. This is consistent with the quantum
Hall systems with flat Landau levels, where the interaction
stabilizes simultaneously the fractional quantum Hall state
with spin polarization. Note that the FCI can be stabilized in
a relatively broader region of the twisted angle here compared
to that in the magic angle twisted bilayer graphene [33–39],
and the region of angle for FCI increases with interaction. For
interaction above the dashed line in Fig. 3(b), our single-band
approximation used in the numerical calculations breaks down
and it requires taking other nearby bands into account.

Excitations. Here we study the charge neutral excita-
tions above the FCI ground states. As a consequence of
the spontaneous valley polarization, we consider the val-
ley waves’ excitation |(v (q)〉 =

∑
k zkC

†
+(k + q)C−(k)|(−〉,

where |(−〉 is the FCI ground state with the τ = − valley
fully occupied and zk is a variational parameter. The presence
of the form factor in Eq. (3) breaks the valley pseudospin
SU(2) rotation symmetry down to the valley U (1)v symmetry.
As a result, the valley wave excitation are gapped as shown in
Fig. 4, which can be fitted by Ew(q) = Jq2 + A. The valley
wave disperses weakly in momentum and thus is well local-
ized in real space.

The lowest intravalley many-body excitation has lower en-
ergy than the valley wave excitation for the parameters we
used, i.e., the energy difference between the lowest fully po-
larized excited state and the FCI state is Emb = 0.167 meV <
Ew, see Fig. 4. Nevertheless, the valley wave excitation re-
mains a stable excitation because the decay of the valley
wave to the intravalley many-body excitations are forbidden.
Intravalley many-body excitations have the valley quantum
number 0, while the valley wave has the valley quantum
number 2.

L032070-3

Using the parameters from MacDonald, the 
optimal twist angle is around 1.4 degree, 
but the experimental twist angle is 3.9 
degree



Lattice Reconstruction

Previous calculations didn’t include lattice reconstruction effect
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Effect of Lattice Reconstruction

2

� (meV) � (�) � (meV)
Local-stacking approx. [28] 8.0 -89.6 -8.5

Large-scale DFT 20.8 -107.7 -23.8

TABLE I. Parameters for the continuum model.

(�� is the bare electron mass) and (�,�,�) are the free pa-
rameters in the continuum model. The continuum Hamil-
tonian for the �� valley can be obtained by applying time
reversal symmetry to�� . Inside each valley, the electrons
are fully spin polarized due to the large spin-valley cou-
pling, and opposite valleys have opposite spin due to time-
reversal symmetry [30, 31]. We will focus on the �� valley,
as this is where the holes are populated in the experiment.
The parameters can be �xed by various approaches,

among which the simplest one is to �t from DFT calcula-
tions for bilayer MoTe2 at various stackings. This approach
is adopted by Ref. 28 and the parameters are reproduced
in Table I. The valence band structure with this set of pa-
rameters is shown in Fig. 1(b) at twist angle 3.89�. The
topmost valence band is dispersive with band width larger
than 20 meV. In addition, the two topmost bands overlap
each other in energy. Both features are unfavorable for the
emergence of FCI.
In this work, we seek to establish a better understanding

of the single particle band structure by performing large-
scale DFT calculations to take into account atomic relax-
ation, layer corrugation and interlayer electric polarization
(details in the Supplemental Material [32]). We choose the
closest commensurate twist angle (3.89�) to the experimen-
tal value and construct the moiré superlattice of MoTe2 us-
ing its monolayer unit cell with the optimized lattice con-
stant � = 3.52 Å. The band structure of the moiré superlat-
tice is presented in Fig. 1(a) as red dots. The DFT result
shows signi�cant lattice reconstruction in both in-plane
and out-of-plane direction [Fig. 1(c-d)]. We then�t the con-
tinuum model parameters to the DFT band structure, and
the result is presented in Table I. Compared to the param-
eters from Ref. 28, our parameters features a much larger
moiré potential and interlayer tunneling, which is likely
caused by the signi�cant lattice reconstruction, resulting in
an isolated Chern band with band width of roughly 9 meV
[cf. Fig. 1(a)].
Fractional Chern insulator at � = �2�3.—Having es-

tablished the existence of an isolated, relatively �at Chern
band, we investigate whether FCI can be stabilized. We
adopt the following form of the Coulomb interaction:

�int =
1
2�

�

�,��,�,��,�,��,�
�(�)�†���+��

†
�������������������, (2)

where �(�) = �2tanh(����)�2�0���� is the Coulomb inter-
action with dual-gate screening, � is the area of the system
(proportional to the number of � points in the calculations),
� is the distance between the twisted bilayer MoTe2 and
two symmetric metal gates, �0 is the vacuum permittivity

FIG. 1. Band structures for �� valley calculated by continuum
model with parameters derived from our DFT calculation [(a)]
and parameters from Ref. 28 [(b)]. Chern numbers for the two
topmost bands are labeled in the plot. Kohn-Sham DFT band
structure is plotted with red circles in (a), and the two DFT bands
labeled by empty circles are from the � valley. The twist angle
is 3.89�. (c) shows in-plane atomic displacement �eld in a moiré
unit cell after relaxation, and (d) shows interlayer (IL) distance for
the line cut in (c). The maximal in-plane atomic displacement is
0.32 Å. High symmetry stackings are labeled in (c). MM/XM/MX
denotes the stacking where the metal/chalcogen/metal atoms of
the top layer are directly above the metal/metal/chalcogen atoms
of the bottom layer, respectively.

and � is the relative dielectric constant. Here, �†��� creates a
planewavewithmomentum� at valley � and layer �. Due to
spin-valley locking, � can also be understood as the spin la-
bel. Weproject the interaction onto the topmostmoiré band
and carry out ED calculations. We choose � = 15 to make
the characteristic interaction strength smaller than the av-
eraged energy gap. For smaller �, we present the phase di-
agram in the Supplemental Material [32]. A more accurate
treatment to include the bandmixing is left for future stud-
ies.
The precursor to the FCI is spontaneous time-reversal

symmetry breaking. We �rst perform ED calculations tak-
ing both valleys into account with a system size of 3 ◊ 4
unit cells. We �nd that over a broad range of twist angles,
the ground state for both � = �1�3 and � = �2�3 is fully
valley-polarized, with holes occupying only one valley [cf.
Fig. 2(a)]. Since the spin and valley indices are coupled, full
valley polarization implies full spin polarization. The spin
gap, de�ned as the energy di�erence between the lowest-
energy state that does not exhibit full valley-polarization
and the fully valley-polarized ground state, is shown in
Fig. 2(b) for both � = �1�3 and � = �2�3. The spin gap

In-plane relaxation Out-of-plane relaxation

θ = 3.9∘

Large-scale DFT Local-stacking approx.

valleys can be considered independently. Following the
experiment [27], we consider R stacking twisted bilayer
and the continuum model Hamiltonian for K valley
reads [28,29]

HK ¼
! Hb ΔTðrÞ
Δ†

TðrÞ Ht

"
: ð1Þ

Here, Hb=t ¼ −ℏ2ðk − Kb=tÞ2=2m$ þ Δb=tðrÞ is the bottom
(b) and top (t) layer Hamiltonian subjected to a moiré
potential Δb=tðrÞ ¼ 2v

P
j¼1;3;5 cos ðGj · r& ψÞ, where the

bottom (top) layer corresponds to the positive (negative)
sign. Kb=t is theK point for the bottom and top layer andGj

is the moiré reciprocal lattice vectors defined by Gj ¼
ð4π=

ffiffiffi
3

p
aMÞfcos½πðj − 1Þ=3(; sin½πðj − 1Þ=3(g. The inter-

layer tunneling is dictated by threefold rotational symmetry
as ΔTðrÞ ¼ wð1þ e−iG2·r þ e−iG3·rÞ. m$ ¼ 0.6me is the
effective mass (me is the bare electron mass) and
ðv;ψ ; wÞ are the free parameters in the continuum model.
The continuum Hamiltonian for the K0 valley can be
obtained by applying time-reversal symmetry to HK .
Inside each valley, the electrons are fully spin polarized
due to the large spin-valley coupling, and opposite valleys
have opposite spin due to time-reversal symmetry [30,31].
The parameters can be fixed by various approaches,

among which the simplest one is to fit from DFT calcu-
lations for bilayer MoTe2 at various stackings. This
approach is adopted by Ref. [28] and the parameters are
reproduced in Table I. The valence band structure with this
set of parameters is shown in Fig. 1(b) at twist angle 3.89°.
The topmost valence band is dispersive with bandwidth
larger than 20 meV. In addition, the two topmost bands
overlap each other in energy. Both features are unfavorable
for the emergence of FCIs.
In this Letter, we seek to establish a better understanding

of the single-particle band structure by performing large-
scale DFT calculations to take into account atomic relax-
ation, layer corrugation, and interlayer electric polarization
(details in the Supplemental Material [32]). We choose the
closest commensurate twist angle (3.89°) to the experi-
mental value and construct the moiré superlattice of MoTe2
using its monolayer unit cell with the optimized lattice
constant a ¼ 3.52 Å. The band structure of the moiré
superlattice is presented in Fig. 1(a) as red dots. The
DFT result shows significant lattice reconstruction in both
in plane and out of plane directions [Figs. 1(c) and 1(d)].
We then fit the continuum model parameters to the DFT

band structure, and the result is presented in Table I.
Compared to the parameters from Ref. [28], our parameters
features a much larger moiré potential and interlayer
tunneling, which is likely caused by the significant lattice
reconstruction [37–39], resulting in an isolated Chern band
with bandwidth of roughly 9 meV [cf. Fig. 1(a)].
Fractional Chern insulator at ν ¼ −2=3.—Having

established the existence of an isolated, relatively flat
Chern band, we investigate whether FCIs can be stabilized.
We adopt the following form of the Coulomb interaction:

Hint ¼
1

2A

X

l;l0;τ;τ0;k;k0;q

VðqÞc†lτkþqc
†
l0τ0k0−qcl0τ0k0clτk; ð2Þ

where VðqÞ ¼ e2 tanhðjqjdÞ=2ϵ0ϵjqj is the Coulomb inter-
action with dual-gate screening, A is the area of the system
(proportional to the number of k points in the calculations),
d is the distance between the twisted bilayer MoTe2 and
two symmetric metal gates, ϵ0 is the vacuum permittivity,
and ϵ is the relative dielectric constant. Here, c†lτk creates a
plane wave with momentum k at valley τ and layer l.

TABLE I. Parameters for the continuum model.

v (meV) ψ (deg) w (meV)

Local stacking approx. [28] 8.0 −89.6 −8.5
Large-scale DFT 20.8 þ107.7 −23.8

FIG. 1. Band structures for K valley calculated by continuum
model with parameters derived from our DFT calculation (a) and
parameters from Ref. [28] (b). Chern numbers for the two
topmost bands are labeled in the plot. Kohn-Sham DFT band
structure is plotted with red circles in (a), and the two DFT bands
labeled by empty circles are from the Γ valley. The twist angle is
3.89°. (c) In plane atomic displacement field in a moiré unit cell
after relaxation, and (d) shows interlayer (IL) distance for the line
cut in (c). The maximal in plane atomic displacement is 0.32 Å.
High symmetry stackings are labeled in (c). MM/XM/MX
denotes the stacking where the metal/chalcogen/metal atoms of
the top layer are directly above the metal/metal/chalcogen atoms
of the bottom layer, respectively.
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H =
− (k − Kb)2

2m* + Δb(r) ΔT(r)

Δ†
T(r) − (k − Kt)2

2m* + Δt(r)

Δb/t(r) = 2v ∑
j=1,3,5

cos(Gj ⋅ r ± ψ)

ΔT(r) = w(1 + e−iG2⋅r + e−iG3⋅r)

2

� (meV) � (�) � (meV)
Local-stacking approx. [28] 8.0 -89.6 -8.5

Large-scale DFT 20.8 +107.7 -23.8

TABLE I. Parameters for the continuum model.

(�� is the bare electron mass) and (�,�,�) are the free pa-
rameters in the continuum model. The continuum Hamil-
tonian for the �� valley can be obtained by applying time
reversal symmetry to�� . Inside each valley, the electrons
are fully spin polarized due to the large spin-valley cou-
pling, and opposite valleys have opposite spin due to time-
reversal symmetry [30, 31].
The parameters can be �xed by various approaches,

among which the simplest one is to �t from DFT calcula-
tions for bilayer MoTe2 at various stackings. This approach
is adopted by Ref. 28 and the parameters are reproduced
in Table I. The valence band structure with this set of pa-
rameters is shown in Fig. 1(b) at twist angle 3.89�. The
topmost valence band is dispersive with band width larger
than 20 meV. In addition, the two topmost bands overlap
each other in energy. Both features are unfavorable for the
emergence of FCI.
In this work, we seek to establish a better understanding

of the single particle band structure by performing large-
scale DFT calculations to take into account atomic relax-
ation, layer corrugation and interlayer electric polarization
(details in the Supplemental Material [32]). We choose the
closest commensurate twist angle (3.89�) to the experimen-
tal value and construct the moiré superlattice of MoTe2 us-
ing its monolayer unit cell with the optimized lattice con-
stant � = 3.52 Å. The band structure of the moiré su-
perlattice is presented in Fig. 1(a) as red dots. The DFT
result shows signi�cant lattice reconstruction in both in-
plane and out-of-plane direction [Fig. 1(c-d)]. We then �t
the continuum model parameters to the DFT band struc-
ture, and the result is presented in Table I. Compared to the
parameters from Ref. 28, our parameters features a much
larger moiré potential and interlayer tunneling, which is
likely caused by the signi�cant lattice reconstruction [33–
35], resulting in an isolated Chern band with band width of
roughly 9 meV [cf. Fig. 1(a)].
Fractional Chern insulator at � = �2�3.—Having es-

tablished the existence of an isolated, relatively �at Chern
band, we investigate whether FCI can be stabilized. We
adopt the following form of the Coulomb interaction:

�int =
1
2�

�

�,��,�,��,�,��,�
�(�)�†���+��

†
�������������������, (2)

where �(�) = �2tanh(����)�2�0���� is the Coulomb inter-
action with dual-gate screening, � is the area of the system
(proportional to the number of � points in the calculations),
� is the distance between the twisted bilayer MoTe2 and
two symmetric metal gates, �0 is the vacuum permittivity
and � is the relative dielectric constant. Here, �†��� creates a

FIG. 1. Band structures for � valley calculated by continuum
model with parameters derived from our DFT calculation [(a)]
and parameters from Ref. 28 [(b)]. Chern numbers for the two
topmost bands are labeled in the plot. Kohn-Sham DFT band
structure is plotted with red circles in (a), and the two DFT bands
labeled by empty circles are from the � valley. The twist angle
is 3.89�. (c) shows in-plane atomic displacement �eld in a moiré
unit cell after relaxation, and (d) shows interlayer (IL) distance for
the line cut in (c). The maximal in-plane atomic displacement is
0.32 Å. High symmetry stackings are labeled in (c). MM/XM/MX
denotes the stacking where the metal/chalcogen/metal atoms of
the top layer are directly above the metal/metal/chalcogen atoms
of the bottom layer, respectively.

plane wave with momentum � at valley � and layer �. Due
to spin-valley locking, � can also be understood as the spin
label. We project the interaction onto the topmost moiré
band and carry out ED calculations. We choose � = 15 to
make the characteristic interaction strength smaller than
the averaged energy gap. For smaller �, we present the
phase diagram in the Supplemental Material [32]. While
we left a more accurate treatment to include the band mix-
ing for future studies, there are evidences that FCI can still
be stablized even when the interaction exceeds the band
gap [36, 37].
The precursor to the FCI is spontaneous time-reversal

symmetry breaking. We �rst perform ED calculations tak-
ing both valleys into account with a system size of 3 ◊ 4
unit cells. We �nd that over a broad range of twist angles,
the ground state for both � = �1�3 and � = �2�3 is fully
valley-polarized, with holes occupying only one valley [cf.
Fig. 2(a)]. Since the spin and valley indices are coupled, full
valley polarization implies full spin polarization. The spin
gap, de�ned as the energy di�erence between the lowest-
energy state that does not exhibit full valley-polarization
and the fully valley-polarized ground state, is shown in

First harmonic approximation



Valley Polarization

Strong electron-electron interaction lifts valley degeneracy for  
All the dynamics occur within a single valley

ν ≤ 1

3

FIG. 2. For a large range of twist angles, the ground state of twisted
bilayer MoTe2 is fully valley polarized, as shown in the top panel
of (a). The arrows represent spin, which is locked to the valley
(� and ��) degree of freedom. The bottom panel of (a) shows an
example of excited state with one spin �ip. The energy di�erence
between the lowest state with spin �ip(s) and the ground state is
de�ned as the spin gap, shown in (b) for � = �1�3 and � = �2�3
as a function of the twist angle. The calculation for (b) is carried
outwith 3◊4 unit cells. (c) Themany-body spectrum as a function
of total crystalline momentum with the assumption of full valley
polarization at � = �2�3. (d) shows the evolution of ground states
under �ux insertion along the �2 direction. During the �ux inser-
tion, the many-body gap is maintained. The calculation for (c-d)
is carried out with 4 ◊ 6 unit cells; the dielectric constant is cho-
sen to be 15; the distance between gate and sample is chosen to be
� = 300 Å; the twist angle is 3.89�.

for � = �1�3 is much smaller than that of � = �2�3, in-
dicating much weaker ferromagnetism of the former. The
di�erence in the spin gap is consistent with the experi-
mental observation that ferromagnetism appears at �4.5 K
at � = �2�3, whereas no ferromagnetism is observed at
� = �1�3 down to base temperature of 1.6 K [33].
Given the large spin gap and strong ferromagnetism at

� = �2�3, we further carry out ED calculations for a sin-
gle valley, which allows us to consider a larger system with
4 ◊ 6 unit cells. The most important signature of the FCI
is the ground state degeneracy when the system is put on a
torus [34, 35]. Indeed, the ED energy spectrum shows three
nearly degenerate states, separated by an energy gap from
other states, as shown in Fig. 2(c). Under �ux insertion, the
three ground states evolve into each other, exhibiting a 6�
periodicity [Fig. 2(d)]. We also calculate many-body Chern
number [34] at this �lling to be �2�3, which is consistent
with the experimental observation [1]. The single particle
occupation number, de�ned as �(�) = ��†���� is presented
in the Supplemental Material [32]. The uniformity of �(�)

FIG. 3. (a) Phase diagram as a function of twist angle and di-
electric constant at � = �2�3. � is chosen as 300 Å. FCI:
fractional chern insulator; VP: valley-polarized state; NVP: non-
valley-polarized state. (b) Phase diagram as a function of twist
angle and � at � = �2�3. � is chosen as 15. Many-body gap is
shown in both (a) and (b) by color in FCI phase (unit: meV). FCI
is identi�ed with 4 ◊ 6 unit cells. Valley polarization is identi�ed
with 3 ◊ 4 unit cells.

is a strong indicator favoring FCI over charge density wave
(CDW) states, one of FCI’s competing phases. The above
evidences provide strong evidence to the existence of FCI
in twisted MoTe2 at � = �2�3.
Phase diagram.—The emergence of the FCI state de-

pends on the dominance of electron-electron interaction
energy over single particle kinetic energy. This ratio be-
tween the two energy scales can be adjusted by two fac-
tors: the single-particle band width, and the environmen-
tal dielectric screening of electron-electron interactions.
The most experimentally accessible knob to tune the band
width is changing the twist angle. For example, in twisted
bilayer graphene, �at band emerges at a series of magic an-
gles [36]. For twisted bilayer TMD systems, the band width
is less sensitive to twist angles and we �nd relative isolated
�at bands for twist angle 3� � 4�. The screening of the
electron-electron interactions can be tuned by changing �,
as well as the distance between the sample and the metal
gate �: larger � leads to weaker screening of the electron-
electron interactions.
The phase diagram, as a function of � and either � or �, is

presented in Fig. 3. Within the range of the twist angle pre-
sented in Fig. 3, the bandwidth of the topmost valence band
increases monotonically with �. There are three distinct
phases: the FCI phase, the valley-polarized (VP) phase,
and the non-valley-polarized (NVP) phase. The NVP phase
emerges in the weak electron-electron interaction regime,
characterized by large � and large � [see Fig.3(a)], or small
� [see Fig.3(b)]. For stronger interactions, all holes occupy
the same valley, which is shown as the VP phase in Fig.3.
The nature of these VP phases is left for further studies. FCI
emerges from the VP phases at even stronger interactions.
The many-body gap for FCI phase has a peak at � = 3.5�,
indicating an optimal twist angle for the observation of FCI.
This optimal angle is close to the twist angle (� 3.7�) of the
device in which FCI is observed [1].

valleys can be considered independently. Following the
experiment [27], we consider R stacking twisted bilayer
and the continuum model Hamiltonian for K valley
reads [28,29]

HK ¼
! Hb ΔTðrÞ
Δ†

TðrÞ Ht

"
: ð1Þ

Here, Hb=t ¼ −ℏ2ðk − Kb=tÞ2=2m$ þ Δb=tðrÞ is the bottom
(b) and top (t) layer Hamiltonian subjected to a moiré
potential Δb=tðrÞ ¼ 2v

P
j¼1;3;5 cos ðGj · r& ψÞ, where the

bottom (top) layer corresponds to the positive (negative)
sign. Kb=t is theK point for the bottom and top layer andGj

is the moiré reciprocal lattice vectors defined by Gj ¼
ð4π=

ffiffiffi
3

p
aMÞfcos½πðj − 1Þ=3(; sin½πðj − 1Þ=3(g. The inter-

layer tunneling is dictated by threefold rotational symmetry
as ΔTðrÞ ¼ wð1þ e−iG2·r þ e−iG3·rÞ. m$ ¼ 0.6me is the
effective mass (me is the bare electron mass) and
ðv;ψ ; wÞ are the free parameters in the continuum model.
The continuum Hamiltonian for the K0 valley can be
obtained by applying time-reversal symmetry to HK .
Inside each valley, the electrons are fully spin polarized
due to the large spin-valley coupling, and opposite valleys
have opposite spin due to time-reversal symmetry [30,31].
The parameters can be fixed by various approaches,

among which the simplest one is to fit from DFT calcu-
lations for bilayer MoTe2 at various stackings. This
approach is adopted by Ref. [28] and the parameters are
reproduced in Table I. The valence band structure with this
set of parameters is shown in Fig. 1(b) at twist angle 3.89°.
The topmost valence band is dispersive with bandwidth
larger than 20 meV. In addition, the two topmost bands
overlap each other in energy. Both features are unfavorable
for the emergence of FCIs.
In this Letter, we seek to establish a better understanding

of the single-particle band structure by performing large-
scale DFT calculations to take into account atomic relax-
ation, layer corrugation, and interlayer electric polarization
(details in the Supplemental Material [32]). We choose the
closest commensurate twist angle (3.89°) to the experi-
mental value and construct the moiré superlattice of MoTe2
using its monolayer unit cell with the optimized lattice
constant a ¼ 3.52 Å. The band structure of the moiré
superlattice is presented in Fig. 1(a) as red dots. The
DFT result shows significant lattice reconstruction in both
in plane and out of plane directions [Figs. 1(c) and 1(d)].
We then fit the continuum model parameters to the DFT

band structure, and the result is presented in Table I.
Compared to the parameters from Ref. [28], our parameters
features a much larger moiré potential and interlayer
tunneling, which is likely caused by the significant lattice
reconstruction [37–39], resulting in an isolated Chern band
with bandwidth of roughly 9 meV [cf. Fig. 1(a)].
Fractional Chern insulator at ν ¼ −2=3.—Having

established the existence of an isolated, relatively flat
Chern band, we investigate whether FCIs can be stabilized.
We adopt the following form of the Coulomb interaction:

Hint ¼
1

2A

X

l;l0;τ;τ0;k;k0;q

VðqÞc†lτkþqc
†
l0τ0k0−qcl0τ0k0clτk; ð2Þ

where VðqÞ ¼ e2 tanhðjqjdÞ=2ϵ0ϵjqj is the Coulomb inter-
action with dual-gate screening, A is the area of the system
(proportional to the number of k points in the calculations),
d is the distance between the twisted bilayer MoTe2 and
two symmetric metal gates, ϵ0 is the vacuum permittivity,
and ϵ is the relative dielectric constant. Here, c†lτk creates a
plane wave with momentum k at valley τ and layer l.

TABLE I. Parameters for the continuum model.

v (meV) ψ (deg) w (meV)

Local stacking approx. [28] 8.0 −89.6 −8.5
Large-scale DFT 20.8 þ107.7 −23.8

FIG. 1. Band structures for K valley calculated by continuum
model with parameters derived from our DFT calculation (a) and
parameters from Ref. [28] (b). Chern numbers for the two
topmost bands are labeled in the plot. Kohn-Sham DFT band
structure is plotted with red circles in (a), and the two DFT bands
labeled by empty circles are from the Γ valley. The twist angle is
3.89°. (c) In plane atomic displacement field in a moiré unit cell
after relaxation, and (d) shows interlayer (IL) distance for the line
cut in (c). The maximal in plane atomic displacement is 0.32 Å.
High symmetry stackings are labeled in (c). MM/XM/MX
denotes the stacking where the metal/chalcogen/metal atoms of
the top layer are directly above the metal/metal/chalcogen atoms
of the bottom layer, respectively.
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mental value and construct the moiré superlattice of MoTe2
using its monolayer unit cell with the optimized lattice
constant a ¼ 3.52 Å. The band structure of the moiré
superlattice is presented in Fig. 1(a) as red dots. The
DFT result shows significant lattice reconstruction in both
in plane and out of plane directions [Figs. 1(c) and 1(d)].
We then fit the continuum model parameters to the DFT

band structure, and the result is presented in Table I.
Compared to the parameters from Ref. [28], our parameters
features a much larger moiré potential and interlayer
tunneling, which is likely caused by the significant lattice
reconstruction [37–39], resulting in an isolated Chern band
with bandwidth of roughly 9 meV [cf. Fig. 1(a)].
Fractional Chern insulator at ν ¼ −2=3.—Having

established the existence of an isolated, relatively flat
Chern band, we investigate whether FCIs can be stabilized.
We adopt the following form of the Coulomb interaction:
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action with dual-gate screening, A is the area of the system
(proportional to the number of k points in the calculations),
d is the distance between the twisted bilayer MoTe2 and
two symmetric metal gates, ϵ0 is the vacuum permittivity,
and ϵ is the relative dielectric constant. Here, c†lτk creates a
plane wave with momentum k at valley τ and layer l.

TABLE I. Parameters for the continuum model.

v (meV) ψ (deg) w (meV)

Local stacking approx. [28] 8.0 −89.6 −8.5
Large-scale DFT 20.8 þ107.7 −23.8

FIG. 1. Band structures for K valley calculated by continuum
model with parameters derived from our DFT calculation (a) and
parameters from Ref. [28] (b). Chern numbers for the two
topmost bands are labeled in the plot. Kohn-Sham DFT band
structure is plotted with red circles in (a), and the two DFT bands
labeled by empty circles are from the Γ valley. The twist angle is
3.89°. (c) In plane atomic displacement field in a moiré unit cell
after relaxation, and (d) shows interlayer (IL) distance for the line
cut in (c). The maximal in plane atomic displacement is 0.32 Å.
High symmetry stackings are labeled in (c). MM/XM/MX
denotes the stacking where the metal/chalcogen/metal atoms of
the top layer are directly above the metal/metal/chalcogen atoms
of the bottom layer, respectively.
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We now add interaction



Fractional Chern Insulators in tMoTe2

Because of spin-valley locking, τ can also be understood as
the spin label. We project the interaction onto the topmost
moiré band and carry out ED calculations.We choose ϵ ¼ 15
to make the characteristic interaction strength smaller than
the averaged energy gap. For smaller ϵ, we present the phase
diagram in the Supplemental Material [32]. While we left a
more accurate treatment to include the bandmixing for future
studies, there are evidences that FCIs can still be stabilized
even when the interaction exceeds the band gap [40,41].
The precursor to the FCI is spontaneous time-reversal

symmetry breaking. We first perform ED calculations
taking both valleys into account with a system size of
3 × 4 unit cells. We find that, over a broad range of twist
angles, the ground state for both ν ¼ −1=3 and ν ¼ −2=3
is fully valley polarized, with holes occupying only one
valley [cf. Fig. 2(a)]. Since the spin and valley indices are
coupled, full valley polarization implies full spin polari-
zation. The spin gap, defined as the energy difference
between the lowest-energy state that does not exhibit full

valley polarization and the fully valley-polarized ground
state, is shown in Fig. 2(b) for both ν ¼ −1=3 and
ν ¼ −2=3. The spin gap for ν ¼ −1=3 is much smaller
than that of ν ¼ −2=3, indicating much weaker ferromag-
netism of the former. The difference in the spin gap is
consistent with the experimental observation that ferro-
magnetism appears at ∼4.5 K at ν ¼ −2=3, whereas no
ferromagnetism is observed at ν ¼ −1=3 down to base
temperature of 1.6 K [42].
Given the large spin gap and strong ferromagnetism at

ν ¼ −2=3, we further carry out ED calculations for a single
valley, which allows us to consider a larger system with
4 × 6 unit cells.
The most important signature of the FCI is the ground

state degeneracy when the system is put on a torus [43,44].
Indeed, the ED energy spectrum shows three nearly
degenerate states, separated by an energy gap from other
states, as shown in Fig. 2(c). Under flux insertion, the three
ground states evolve into each other, exhibiting a 6π
periodicity [Fig. 2(d)]. We also calculate the many-body
Chern number [43] at this filling to be −2=3, which is
consistent with the experimental observation [27]. The
single-particle occupation number, defined as nðkÞ ¼
hc†kcki is presented in the Supplemental Material [32].
The uniformity of nðkÞ is a strong indicator favoring FCI
over charge density wave states, one of the FCI’s compet-
ing phases. The above evidences provide strong evidence to
the existence of the FCI in twisted MoTe2 at ν ¼ −2=3.

Phase diagram.—The emergence of the FCI state
depends on the dominance of electron-electron interaction
energy over single-particle kinetic energy. This ratio
between the two energy scales can be adjusted by two
factors: the single-particle bandwidth and the environmen-
tal dielectric screening of electron-electron interactions.
The most experimentally accessible knob to tune the
bandwidth is changing the twist angle. For example, in
twisted bilayer graphene, the flat band emerges at a series
of magic angles [45]. For twisted bilayer TMD systems, the
bandwidth is less sensitive to twist angles and we find
relative isolated flat bands for twist angle 3°–4°. The
screening of the electron-electron interactions can be tuned
by changing ϵ, as well as the distance between the sample
and the metal gate d: larger d leads to weaker screening of
the electron-electron interactions.
The phase diagram, as a function of θ and either ϵ or d, is

presented in Fig. 3. Within the range of the twist angle
presented in Fig. 3, the bandwidth of the topmost valence
band increases monotonically with θ. There are three
distinct phases: the FCI phase, the valley-polarized (VP)
phase, and the non-valley-polarized (NVP) phase. The
NVP phase emerges in the weak electron-electron inter-
action regime, characterized by large θ and large ϵ [see
Fig. 3(a)], or small d [see Fig. 3(b)]. For stronger
interactions, all holes occupy the same valley, which is
shown as the VP phase in Fig. 3. Our numerical evidence

FIG. 2. For a large range of twist angles, the ground state of
twisted bilayer MoTe2 is fully valley polarized, as shown in the
top of (a). The arrows represent spin, which is locked to the valley
(K and K0) degree of freedom. The bottom of (a) shows an
example of the excited state with one spin flip. The energy
difference between the lowest state with spin flip(s) and the
ground state is defined as the spin gap, shown in (b) for ν ¼ −1=3
and ν ¼ −2=3 as a function of the twist angle. The calculation for
(b) is carried out with 3 × 4 unit cells. (c) The many-body
spectrum as a function of total crystalline momentum with the
assumption of full valley polarization at ν ¼ −2=3. (d) The
evolution of ground states under flux insertion along the k2
direction. During the flux insertion, the many-body gap is
maintained. The calculation for (c) and (d) is carried out with
4 × 6 unit cells; the dielectric constant is chosen to be 15; the
distance between gate and sample is chosen to be d ¼ 300 Å; the
twist angle is 3.89°.
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suggests that the VP states are most likely metal states with
fully polarized spin, meaning they represent a half-metal
state [23]. The nature of these VP phases is left for further
studies. The FCI emerges from the VP phases at even
stronger interactions. The many-body gap for the FCI phase
has a peak at θ ¼ 3.5°, indicating an optimal twist angle for
the observation of FCIs. This optimal angle is close to the
twist angle (∼3.7°) of the device in which the FCI is
observed [27].
The effect of electric field.—An out of plane electric field

generates potential differences between the top and bottom
layers. Experimentally, it is observed that the FCI at
ν ¼ −2=3 can be suppressed by this out of plane electric
field. This observation is not necessarily surprising, since
layer potential differences will induce a topological phase
transition at the single-particle level, making the topmost
valence band topologically trivial. However, our calcula-
tions show that the FCI is suppressed well before the
single-particle topological phase transition. In Fig. 4(a),
we show that the many-body gap closes at electric field
E ¼ 1.26 meV=Å. In Fig. 4(b), we present the single-
particle band structure for E ¼ 1.39 meV=Å, where an
isolated flat Chern band can still be observed. The band-
width of the Chern band at E ¼ 1.39 meV=Å is compa-
rable to that at E ¼ 0.0 meV=Å, but the FCI is already
destroyed. In experiment, the ferromagnetism disappears
at E ∼ 5 meV=Å [27], implying the FCI is destroyed at a
smaller electric field. Our critical electric field E ¼
1.26 meV=Å is consistent with this observation.
It is well known that completely quenched kinetic energy

(i.e., vanishing bandwidth) does not ensure the existence of
the FCI, and a number of proposals [46–50] are put forward
to identify the conditions for the FCI to emerge. Many of
these proposals aim to design wave functions in a flat Chern
band such that they closely resemble the wave functions of
a Landau level. For example, since the Berry curvature Ω

and quantummetric tensor g are constant for Landau levels,
the flatness of these two quantities [46–48] in the reciprocal
space is heuristically viewed as a promising indicator for
the emergence of FCIs. In Fig. 4(c), we present the distri-
butions of Ω and trðgÞ for E ¼ 0.0 and E ¼ 1.39 meV=Å.
A serious deterioration of the flatness of the Berry cur-
vature and quantummetric tensor can be observed when the
FCI is destroyed. BothΩ and trðgÞ at E ¼ 1.39 meV=Å are
concentrated at the moiré K valley [Fig. 4(c)], which
explains the suppression of the FCI state.
Fractional Chern insulator at ν ¼ −3=5.—In addition to

the ν ¼ −1=3 state, the experimental observation also
includes the ν ¼ −3=5 state [27]. However, in our calcu-
lations, we do not observe a clear many-body gap at
ν ¼ −3=5 for the dielectric constant of ϵ ¼ 15.
Nonetheless, when the dielectric constant is increased to
ϵ ¼ 8, which is closer to the experimental value, we find
evidence for the FCI [32]. The characteristic interaction at
ϵ ¼ 8 is larger than the energy gap between the two
topmost bands, but the result can still be viewed as
supporting evidences of the existence of the FCI at
ν ¼ −3=5. We also performed ED calculations for
ν ¼ −1=5, −2=5, and −4=5 and find no clear evidence
of FCIs for ν ¼ −1=5 and −4=5. For ν ¼ −2=5, we find

FIG. 3. (a) Phase diagram as a function of twist angle and
dielectric constant at ν ¼ −2=3. d is chosen as 300 Å. (b) Phase
diagram as a function of twist angle and d at ν ¼ −2=3. ϵ is
chosen as 15. Many-body gap is shown in both (a) and (b) by
color in the FCI phase (units in meV). The FCI is identified
with 4 × 6 unit cells. Valley polarization is identified with
3 × 4 unit cells.

FIG. 4. (a) Many-body gap as a function of external electric
field at ϵ ¼ 15 and θ ¼ 3.89°. (b) Band structure at E ¼
1.39 mV=Å and θ ¼ 3.89° (the FCI is already destroyed by
the electric field). (c) Indicators for the emergence of the FCI at
E ¼ 0 mV=Å (left) and E ¼ 1.39 mV=Å (right). Ω is the Berry
curvature and trðgÞ is the trace of quantum metric tensor. The unit
for (c) is the inverse of the area of the moiré Brillouin zone.
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➤ Exact diagonalization on a torus 
(4 x 6) 

➤ Single-band projection 

➤ Remote band effects are 
important (Yu et al., 
arXiv:2309.14429, 
Abouelkomsan et al, 
arXiv:2309.16548)

graphene sheet !Novoselov et al., 2005; Zhang et al.,
2005".

C. The quantum Hall effect

The quantum Hall effect was discovered by Klitzing et
al. !1980". They found that in a strong magnetic field the
Hall conductivity of a two-dimensional !2D" electron gas
is exactly quantized in the units of e2 /h. The exact quan-
tization was subsequently explained by Laughlin !1981"
based on gauge invariance and was later related to a
topological invariance of the energy bands !Thouless et
al., 1982; Avron et al., 1983; Niu et al., 1985". Since then
it has blossomed into an important research field in
condensed-matter physics. In this section we focus only
on the quantization aspect of the quantum Hall effect
using the formulation developed so far.

Consider a two-dimensional band insulator. It follows
from Eq. !3.6" that the Hall conductivity of the system is
given by

!xy =
e2

"
#

BZ

d2k
!2#"2$kxky

, !3.10"

where the integration is over the entire Brillouin. Once
again we encounter the situation where the Berry curva-
ture is integrated over a closed manifold. Here !xy is the
Chern number in the units of e2 /h, i.e.,

!xy = n
e2

h
. !3.11"

Therefore the Hall conductivity is quantized for a two-
dimensional band insulator of noninteracting electrons.

Historically the quantization of the Hall conductivity
in a crystal was first shown by Thouless et al. !1982" for
magnetic Bloch bands !see also Sec. VIII". It was shown
that, due to the magnetic translational symmetry, the
phase of the wave function in the magnetic Brillouin
zone carries a vortex and leads to a nonzero quantized
Hall conductivity !Kohmoto, 1985". However, it is clear
from the above derivation that for the quantum Hall
effect to occur the only condition is that the Chern num-
ber of the bands must be nonzero. It is possible that in
some materials the Chern number can be nonzero even
in the absence of an external magnetic field. Haldane
!1988" constructed a tight-binding model on a honey-
comb lattice which displays the quantum Hall effect with
zero net flux per unit cell. Another model is proposed
for semiconductor quantum well where the spin-orbit
interaction plays the role of the magnetic field !Qi et al.,
2006; Liu et al., 2008" and leads to a quantized Hall con-
ductance. The possibility of realizing the quantum Hall
effect without a magnetic field is attractive in device de-
sign.

Niu et al. !1985" further showed that the quantized
Hall conductivity in two-dimensions is robust against
many-body interactions and disorder $see also Avron
and Seiler !1985"%. Their derivation involves the same
technique discussed in Sec. II.B.2. A two-dimensional
many-body system is placed on a torus by assuming pe-

riodic boundary conditions in both directions. One can
then thread the torus with magnetic flux through its
holes !Fig. 5" and make the Hamiltonian H!%1 ,%2" de-
pend on the flux %1 and %2. The Hall conductivity is
calculated using the Kubo formula

!H = ie2" &
n&0

''0(v1('n)''n(v2('0) − !1 ↔ 2"
!(0 − (n"2 , !3.12"

where 'n is the many-body wave function with ('0) the
ground state. In the presence of flux, the velocity opera-
tor is given by vi=!H!)1 ,)2" /!!")i" with )i= !e /""%i /Li
and Li the dimensions of the system. We recognize that
Eq. !3.12" is the summation formula !1.13" for the Berry
curvature $)1)2

of the state ('0). The existence of a bulk
energy gap guarantees that the Hall conductivity re-
mains unchanged after thermodynamic averaging, which
is given by

!H =
e2

"
#

0

2#/L1

d)1#
0

2#/L2

d)2$)1)2
. !3.13"

Note that the Hamiltonian H!)1 ,)2" is periodic in )i
with period 2# /Li because the system returns to its
original state after the flux is changed by a flux quantum
h /e !and )i changed by 2# /Li". Therefore the Hall con-
ductivity is quantized even in the presence of many-
body interaction and disorder. Due to the high precision
of the measurement and the robustness of the quantiza-
tion, the quantum Hall resistance is now used as the
primary standard of resistance.

The geometric and topological ideas developed in the
study of the quantum Hall effect has a far-reaching im-
pact on modern condensed-matter physics. The robust-
ness of the Hall conductivity suggests that it can be used
as a topological invariance to classify many-body phases
of electronic states with a bulk energy gap !Avron et al.,
1983": states with different topological orders !Hall con-
ductivities in the quantum Hall effect" cannot be adia-
batically transformed into each other; if that happens, a
phase transition must occur. The Hall conductivity has
important applications in strongly correlated electron
systems, such as the fractional quantum Hall effect !Wen
and Niu, 1990", and most recently the topological quan-
tum computing $for a review, see Nayak et al. !2008"%.

ϕ
1

ϕ
2

FIG. 5. Magnetic flux going through the holes of the torus.
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Filed Tuning of the Fractional Chern Insulator State

)

E = 0.0 mV/A

Electric field cause a redistribution 
of the Berry curvature and quantum 
geometric tensor, making them 
more nonuniform and destroying the 
fractional quantum anomalous Hall 
state well before single-particle 
band inversion

The band structures below and above the critical electric 
field are very similar to each other, in terms of both their 
band width and Chern numbers.



Electric field dependence of FQAH

FQAHE No FQAHE

Berry curvature

Quantum metric

The Berry curvature Ω and and quantum metric tensor g are constant for Landau levels. The flatness 
of these two quantities in the k-space is heuristically viewed as a promising indicator for the 
emergence of FCIs.



What about small twist angles?

At 1.5 degree twist angle, the moire 
period is ~ 10 nm, and the moire unit cell 
contains more than 10,000 atoms. Direct 
DFT relaxation is not possible!

Lattice reconstruction fundamentally reshape the electronic structure



Machine Learning to the Rescue

➤ The total energy is a function of all atom 
positions . Assuming the 
energy is local, we choose a cut-off of 10  

➤ Training data is obtained at 6  twist angle, 
5,000 MD steps at 500 K 

➤ Verified at 5  twist angle

E(r1, r2, ⋯r10,000)
Å

∘

∘

Data+Training takes ~2 weeks, direct DFT relaxation would take years (may not even 
converge to global minimum)!

Ting Cao



Lattice Reconstruction

example, in tWSe2 (Fig. 2c), when the twist angle changes from 1.70° to
1.54°, the first and second bands invert at the γ point, and the second
and third bands invert at the κ and κ0 points. As a result, the Chern
numbers of the two topmost bands change from (+1, +1) to (0, 0).

The twist-angle dependence of the Chern numbers is in excellent
agreement with experiments. First, it was reported that at ν = −1 the
Chern numbers are opposite for tWSe2 at 1.23°6 and tMoTe2 at 3.7°13–16.
Second, in 1.23° tWSe2, the Chern numbers are the same at filling
factors ν = −1 and ν = −3,which indicates that the Chern numbers of the
first two bands from the same valley must be the same6. Further
increasing the twist-angle results in trivial insulators up to 1.6°6.
Remarkably, all these observations are consistent with the trend in the
twist-angle dependence of our calculations, confirming the validity of
our machine learning-based approach. Our calculation also predicts
that in tMoTe2, as the twist angle decreases, the Chern numbers of the
two topmost bands change from (+1, −1) to (+1, +1), and finally to (0, 0)
at the smallest angle of the calculation. In particular, our calculations
revealmultiple flat bands with Chern numbers all equal to +1 at around
2°, indicating the possibility of mimicking higher Landau-level physics
in the absence of magnetic field. The presence of multiple bands of
Chern number +1 has been confirmed by a recent experimental
measurement46.

Since we are interested in the sign change of the Chern number of
the topmost band, in the following we will focus on tWSe2. As men-
tioned earlier, the evolution of band topology in momentum space is
closely related to the change in the real-space moiré potential. In
particular, the location of the north/south poles ofΔ(r), which directly
affects the skyrmion number, is given by the difference between the
moiré potentials at the top and bottom layer.

The moiré potential can be inferred from the surface Hartree
potential47, defined as the difference between the Hartree potential

above and below the twisted bilayer surface in DFT calculations. Fig-
ure 3a shows the coarse-grained surface potential drop at 3.15° in
tWSe2. More details can be found in Supplementary Note 4. The
maximum is located at MX, zero at MM, and minimum at XM. Sur-
prisingly, the surface potential drop shows a sign reversal at XM (and
MX) as the twist angles decrease (see Fig. 3a–d). Going from 3.15°, to
1.70°, 1.47°, and eventually down to 1.25°, the potential at the high-
symmetry point XM (andMX) changes sign, and the area of the flipped
region grows in size. This sign switch suggests that the north pole of
Δ(r) at ~3° becomes the south pole at ~1°. Additional features can be
identified near the MM site, where the surface potential drop mimics
the pattern of a six-petal flower with C3 symmetry. We find that the
amplitude of potential inside the petal is comparable with that at XM
(and MX) at 1.70°, suggesting unique quantum confinement effects
which reshapes the electronwave function. The overall effects of these
features can be clearly seen by a line cut along MM–XM–MX–MM,
showing rich variations and multiple extremes in Fig. 3e. The intricate
behavior of the surface potential goes beyond the continuum
approximation of moiré potential based on the first-star expansion of
the reciprocal lattice vectors alone, evident by their Fourier transform
as shown in Fig. 3f.

The evolution of the surface potential implies that the layer
polarization of the wave functions should also change with the twist
angle. In Fig. 4, we plot the real-space wave function for the two top-
most bands at the γ point of themBZ at various twist angles for tWSe2.
Since the time-reversal symmetry T andC2x symmetry are preserved at
the γ point, only the wave function in the top layer is plotted, while the
wave function in the bottom layer can be obtained by performing a
T C2x operation, underwhichMX/XM in the top layer ismapped toXM/
MX in the bottom layer. At 3.15°, the wave function of the first band in
the top layer is localized at MX. As the twist angle decreases, the
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Fig. 2 | Lattice relaxations and band structures. aThe in-plane displacement field
of the top-layer W atoms at 3.15° and 1.25° for tWSe2. The color and arrow denote
the amplitude and direction of in-plane displacement fields, respectively. b The
interlayer distance (ILD) distribution at 3.15° and 1.25° for tWSe2. c, d Twist-angle

dependence of the valence moiré bands of tWSe2 and tMoTe2, respectively. The
labels indicate the spinorientations and theC3z eigenvalues at high-symmetrypoint
with ξ = eiπ/3, ξ* = e−iπ/3, and !1 = ! 1. The C3z eigenvalue is the same at the κ and the
κ0 point.
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example, in tWSe2 (Fig. 2c), when the twist angle changes from 1.70° to
1.54°, the first and second bands invert at the γ point, and the second
and third bands invert at the κ and κ0 points. As a result, the Chern
numbers of the two topmost bands change from (+1, +1) to (0, 0).

The twist-angle dependence of the Chern numbers is in excellent
agreement with experiments. First, it was reported that at ν = −1 the
Chern numbers are opposite for tWSe2 at 1.23°6 and tMoTe2 at 3.7°13–16.
Second, in 1.23° tWSe2, the Chern numbers are the same at filling
factors ν = −1 and ν = −3,which indicates that the Chern numbers of the
first two bands from the same valley must be the same6. Further
increasing the twist-angle results in trivial insulators up to 1.6°6.
Remarkably, all these observations are consistent with the trend in the
twist-angle dependence of our calculations, confirming the validity of
our machine learning-based approach. Our calculation also predicts
that in tMoTe2, as the twist angle decreases, the Chern numbers of the
two topmost bands change from (+1, −1) to (+1, +1), and finally to (0, 0)
at the smallest angle of the calculation. In particular, our calculations
revealmultiple flat bands with Chern numbers all equal to +1 at around
2°, indicating the possibility of mimicking higher Landau-level physics
in the absence of magnetic field. The presence of multiple bands of
Chern number +1 has been confirmed by a recent experimental
measurement46.

Since we are interested in the sign change of the Chern number of
the topmost band, in the following we will focus on tWSe2. As men-
tioned earlier, the evolution of band topology in momentum space is
closely related to the change in the real-space moiré potential. In
particular, the location of the north/south poles ofΔ(r), which directly
affects the skyrmion number, is given by the difference between the
moiré potentials at the top and bottom layer.

The moiré potential can be inferred from the surface Hartree
potential47, defined as the difference between the Hartree potential

above and below the twisted bilayer surface in DFT calculations. Fig-
ure 3a shows the coarse-grained surface potential drop at 3.15° in
tWSe2. More details can be found in Supplementary Note 4. The
maximum is located at MX, zero at MM, and minimum at XM. Sur-
prisingly, the surface potential drop shows a sign reversal at XM (and
MX) as the twist angles decrease (see Fig. 3a–d). Going from 3.15°, to
1.70°, 1.47°, and eventually down to 1.25°, the potential at the high-
symmetry point XM (andMX) changes sign, and the area of the flipped
region grows in size. This sign switch suggests that the north pole of
Δ(r) at ~3° becomes the south pole at ~1°. Additional features can be
identified near the MM site, where the surface potential drop mimics
the pattern of a six-petal flower with C3 symmetry. We find that the
amplitude of potential inside the petal is comparable with that at XM
(and MX) at 1.70°, suggesting unique quantum confinement effects
which reshapes the electronwave function. The overall effects of these
features can be clearly seen by a line cut along MM–XM–MX–MM,
showing rich variations and multiple extremes in Fig. 3e. The intricate
behavior of the surface potential goes beyond the continuum
approximation of moiré potential based on the first-star expansion of
the reciprocal lattice vectors alone, evident by their Fourier transform
as shown in Fig. 3f.

The evolution of the surface potential implies that the layer
polarization of the wave functions should also change with the twist
angle. In Fig. 4, we plot the real-space wave function for the two top-
most bands at the γ point of themBZ at various twist angles for tWSe2.
Since the time-reversal symmetry T andC2x symmetry are preserved at
the γ point, only the wave function in the top layer is plotted, while the
wave function in the bottom layer can be obtained by performing a
T C2x operation, underwhichMX/XM in the top layer ismapped toXM/
MX in the bottom layer. At 3.15°, the wave function of the first band in
the top layer is localized at MX. As the twist angle decreases, the
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Fig. 2 | Lattice relaxations and band structures. a The in-plane displacement field
of the top-layer W atoms at 3.15° and 1.25° for tWSe2. The color and arrow denote
the amplitude and direction of in-plane displacement fields, respectively. b The
interlayer distance (ILD) distribution at 3.15° and 1.25° for tWSe2. c, d Twist-angle

dependence of the valence moiré bands of tWSe2 and tMoTe2, respectively. The
labels indicate the spinorientations and theC3z eigenvalues at high-symmetrypoint
with ξ = eiπ/3, ξ* = e−iπ/3, and !1 = ! 1. The C3z eigenvalue is the same at the κ and the
κ0 point.
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Twist-Angle Dependent Moiré Band Structure

WSe2

MoTe2

+1

Zhang, Wang, Liu, Fan, Cao & DX, Nature Comm. (2024)

exp(i 2π
3 C) = − ξγξκξκ′ 



Back To Real Space: Visualizing Moiré Potential

First harmonic approximation is not enough, higher G expansion is necessary.  
See Jia, … Bernevig, & Wu, PRB (2024).

The moiré potential flips sign at the MX and XM points!
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STM probe of layer localization of band edge

Experimental confirmation of our predictions

22

2.75 degrees twisted MoTe2:

Excluding in-plane relaxations

Experiment Theory
Theory

E. Thompson*, K. T. Chu*, F. Mesple*, X-W. Zhang*, et al, arXiv:2405.19308.

Excluding in-plane relaxation
Thompson, DX, Yankowitz, Nat. Phys. (Accepted)

Without in-plane relaxation the 
position of MX and MX switch





Interlayer Polarization

➤ In a charge neutral system, the potential difference between the top and bottom surface must comes 
from interlayer dipoles 

➤ Where does the interlayer dipole come from?

If the dipole only comes from stacking caused ferroelectricity, it will never flip!



Piezoelectricity

Monolayer TMD breaks inversion symmetry, therefore it is 
piezoelectric active

ρpiezo = e11[2∂xuxy + ∂y(uxx − uyy)]

Duerloo, Ong, Reed, JPCL (2012)
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FIG. 1. a, the relaxed atomic structure of tWSe2 at � = 3.15�. MM, XM, andMX denote that themetal, chalcogen, andmetal atoms of the
top layer are vertically aligned with the metal, metal, and chalcogen atoms of the bottom layer. b, the in-plane displacement �eld of the
top-layerW atoms and the inter-layer distance distribution at � = 3.15� (left panel) and 1.25� (right panel). The maximum displacement
is 0.25 (0.54) Å at 3.15� (1.25�). c, from the left to the right, the valence moiré band dispersions of tWSe2 at � = 3.15�, 1.70�, 1.47�, and1.25�. d, from the left to the right, the valence moiré band dispersions of tMoTe2 at � = 3.89�, 3.15�, 2.14�, and 2.14�.
and XM sites expand signi�cantly. The two layers show
opposite vortex-like displacement patterns in order to min-
imize the stacking energies. The strength of in-plane re-
laxations is signi�cantly dependent on the twist angle. At�=3.15�, the maximum displacement for W atoms is 0.25
Å, while it increases to 0.54 Å at �=3.15�. As a result, the
strain �eld signi�cantly changes with respect to the twist
angle (see SI), which plays an important role in a�ecting
band topologies as will be addressed later.

We then calculate the moiré band structures for the re-
laxed structures. To reduce the computational cost, the
band structures with spin-orbit coupling (soc) are obtained
by using the Siesta package [33]. Considering the incom-
pleteness of the basis set of the Siesta, we validate the ac-
curacy by comparing the band structures from VASP and
Siesta in SI. To determine the Chern numbers for the moiré
bands, we calculate the �3 eigenvalues by using the DFT
wave functions. Figures 1(c) and (d) show the twist-angle
dependence of band structures for tWSe2 and tMoTe2, re-
spectively. The top valence bands are composed of the

folded �-valley and ��-valley minibands. Due to the ab-
sence of inversion symmetry, the bands are not doubly de-
generate everywhere. But the presence of �2� makes the
bands doubly degenerate along the path��� and � � � in
the moiré Brillouin zone (mBZ). In the following, we only
focus on the�-valley and use the �rst, second, and so on to
enumerate the �-valley moiré bands.
For tWSe2, the Chern numbers of the topmost two bands

are (+1, +1) at �=3.15�. Since the calculated Chern num-
bers are only de�ned up to modulo 3, we compare our re-
sults with previous DFT calculations in tWSe2 [28], where
the Chern numbers are obtained from the integral of the
Berry phase in a discretized mBZ. As the twist angle de-
creases, the topmost two bands at the � point become close
in energy. In addition, the second and third bands at the �
point also become close. The Chern numbers don’t change
until �<1.70�. At �=1.70�, interestingly, the energy max-
imum of the second band changes to the � point, which
implies that the distribution of Berry curvatures changes.
As � further decreases, the topmost two bands are inverted

Displacement field Piezoelectric charge

−

+ −

+

The competition between ferroelectric charge and piezoelectric charge was first 
discussed in Enaldiev … Falko, PRL (2020) 



Piezoelectricity vs Ferroelectricity
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FIG. 1. a, the relaxed atomic structure of tWSe2 at � = 3.15�. MM, XM, andMX denote that themetal, chalcogen, andmetal atoms of the
top layer are vertically aligned with the metal, metal, and chalcogen atoms of the bottom layer. b, the in-plane displacement �eld of the
top-layerW atoms and the inter-layer distance distribution at � = 3.15� (left panel) and 1.25� (right panel). The maximum displacement
is 0.25 (0.54) Å at 3.15� (1.25�). c, from the left to the right, the valence moiré band dispersions of tWSe2 at � = 3.15�, 1.70�, 1.47�, and1.25�. d, from the left to the right, the valence moiré band dispersions of tMoTe2 at � = 3.89�, 3.15�, 2.14�, and 2.14�.
and XM sites expand signi�cantly. The two layers show
opposite vortex-like displacement patterns in order to min-
imize the stacking energies. The strength of in-plane re-
laxations is signi�cantly dependent on the twist angle. At�=3.15�, the maximum displacement for W atoms is 0.25
Å, while it increases to 0.54 Å at �=3.15�. As a result, the
strain �eld signi�cantly changes with respect to the twist
angle (see SI), which plays an important role in a�ecting
band topologies as will be addressed later.

We then calculate the moiré band structures for the re-
laxed structures. To reduce the computational cost, the
band structures with spin-orbit coupling (soc) are obtained
by using the Siesta package [33]. Considering the incom-
pleteness of the basis set of the Siesta, we validate the ac-
curacy by comparing the band structures from VASP and
Siesta in SI. To determine the Chern numbers for the moiré
bands, we calculate the �3 eigenvalues by using the DFT
wave functions. Figures 1(c) and (d) show the twist-angle
dependence of band structures for tWSe2 and tMoTe2, re-
spectively. The top valence bands are composed of the

folded �-valley and ��-valley minibands. Due to the ab-
sence of inversion symmetry, the bands are not doubly de-
generate everywhere. But the presence of �2� makes the
bands doubly degenerate along the path��� and � � � in
the moiré Brillouin zone (mBZ). In the following, we only
focus on the�-valley and use the �rst, second, and so on to
enumerate the �-valley moiré bands.
For tWSe2, the Chern numbers of the topmost two bands

are (+1, +1) at �=3.15�. Since the calculated Chern num-
bers are only de�ned up to modulo 3, we compare our re-
sults with previous DFT calculations in tWSe2 [28], where
the Chern numbers are obtained from the integral of the
Berry phase in a discretized mBZ. As the twist angle de-
creases, the topmost two bands at the � point become close
in energy. In addition, the second and third bands at the �
point also become close. The Chern numbers don’t change
until �<1.70�. At �=1.70�, interestingly, the energy max-
imum of the second band changes to the � point, which
implies that the distribution of Berry curvatures changes.
As � further decreases, the topmost two bands are inverted
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FIG. 1. a, the relaxed atomic structure of tWSe2 at � = 3.15�. MM, XM, andMX denote that themetal, chalcogen, andmetal atoms of the
top layer are vertically aligned with the metal, metal, and chalcogen atoms of the bottom layer. b, the in-plane displacement �eld of the
top-layerW atoms and the inter-layer distance distribution at � = 3.15� (left panel) and 1.25� (right panel). The maximum displacement
is 0.25 (0.54) Å at 3.15� (1.25�). c, from the left to the right, the valence moiré band dispersions of tWSe2 at � = 3.15�, 1.70�, 1.47�, and1.25�. d, from the left to the right, the valence moiré band dispersions of tMoTe2 at � = 3.89�, 3.15�, 2.14�, and 2.14�.
and XM sites expand signi�cantly. The two layers show
opposite vortex-like displacement patterns in order to min-
imize the stacking energies. The strength of in-plane re-
laxations is signi�cantly dependent on the twist angle. At�=3.15�, the maximum displacement for W atoms is 0.25
Å, while it increases to 0.54 Å at �=3.15�. As a result, the
strain �eld signi�cantly changes with respect to the twist
angle (see SI), which plays an important role in a�ecting
band topologies as will be addressed later.

We then calculate the moiré band structures for the re-
laxed structures. To reduce the computational cost, the
band structures with spin-orbit coupling (soc) are obtained
by using the Siesta package [33]. Considering the incom-
pleteness of the basis set of the Siesta, we validate the ac-
curacy by comparing the band structures from VASP and
Siesta in SI. To determine the Chern numbers for the moiré
bands, we calculate the �3 eigenvalues by using the DFT
wave functions. Figures 1(c) and (d) show the twist-angle
dependence of band structures for tWSe2 and tMoTe2, re-
spectively. The top valence bands are composed of the

folded �-valley and ��-valley minibands. Due to the ab-
sence of inversion symmetry, the bands are not doubly de-
generate everywhere. But the presence of �2� makes the
bands doubly degenerate along the path��� and � � � in
the moiré Brillouin zone (mBZ). In the following, we only
focus on the�-valley and use the �rst, second, and so on to
enumerate the �-valley moiré bands.
For tWSe2, the Chern numbers of the topmost two bands

are (+1, +1) at �=3.15�. Since the calculated Chern num-
bers are only de�ned up to modulo 3, we compare our re-
sults with previous DFT calculations in tWSe2 [28], where
the Chern numbers are obtained from the integral of the
Berry phase in a discretized mBZ. As the twist angle de-
creases, the topmost two bands at the � point become close
in energy. In addition, the second and third bands at the �
point also become close. The Chern numbers don’t change
until �<1.70�. At �=1.70�, interestingly, the energy max-
imum of the second band changes to the � point, which
implies that the distribution of Berry curvatures changes.
As � further decreases, the topmost two bands are inverted

Zhang… Cao, DX, Nature Comm (2024)

Note that since graphene is inversion symmetric, the physics discussed here does not appear 
in twisted graphene systems
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Are these bands analogues of a set of Landau levels?

Large θ Small θ

Magic continuum: FCI everywhere 



Higher Landau Level Physics

➤ There is a small twist angle range in which multiple flat C=1 bands appear. 

➤ Are these bands analogous to a Landau level set?  If so, is it possible to realize 
higher LL physics? 2

FIG. 1. Bands for tMoTe2 at twist angles 1.89�, 2.00� and 2.14�.
Empty blue circles are from DFT calculations, and solid lines are
fromWannier interpolation. ForWannier interpolated bands, red
lines are from the � (spin up) valley and black lines are from the
�� (spin down) valley. AllWannier interpolated bands haveChern
number � = +1 for the � valley. Only Wannier interpolated
bands in the frozen window are shown here.

electron interactions.
To further explore the band topology of tMoTe2 around

this twist angle, we have performed DFT calculations at
two other twist angles 2.00� and 1.89�, following the same
method introduced in Ref. [33]. The moiré valence bands
from all three angles are shown in Fig. 1. Four consec-
utive � = 1 bands from � valley are found at twist an-
gles 2.00� and 1.89�. At twist angle 2.14�, the fourth band
is not well-isolated to have a well-de�ned Chern number.
The Chern numbers are determined by Wannier interpo-
lation with Wannier functions, whose construction will be
described below.
The consecutive Chern bands are �at, hinting at the pos-

sibility of strong-correlated physics when these bands are
partially �lled. In this work, we focus on the possibility
of realizing �rst LL physics in tMoTe2, speci�cally target-
ing the second valence band (bands are numbered in the
descending order of energy). At the twist angle 2.00�, the
second valence band reaches optimal �atness. Therefore,
we will focus on this twist angle in the following, deferring
the results from other twist angles to Supplemental Mate-
rial [35].
Quantum geometry from Wannier functions.—To inves-

tigate whether consecutive moiré valence bands resemble
LL series, accurate modelling is required to capture �uctu-
ations of the quantum geometry of the moiré minibands.
Currently, the most common description of moiré super-
lattice is continuum models, in which the e�ect of moiré
superlattice is described by moiré potentials periodic in the
moiré Bravais lattice vectors. However, continuum mod-
els �tted to DFT bands within the �rst few harmonic moiré
potentials do not guarantee an accurate reproduction of the
quantum geometry such as the Berry curvature � and the
Fubini-Study metric � from DFT wave functions. Here,
we constructWannier functions to faithfully represent DFT
wave functions and performmany-body calculations on top

FIG. 2. (a) Real space distributions of the Wannier functions for
tMoTe2 at twist angle 2.00�. Black parallelograms represent moiré
unit cell. The phases of the �3 eigenvalues with respect to the
center of theWannier functions have been labeled. Contributions
from both layers have been summed over. (b) and (c) show the
distribution of � and tr(�) in the Brillouin zone for the second
moiréminiband. Theunit for both� and tr(�) is 2�����, where ���
is the area of the Brillouin zone. Both � and tr(�) are calculated
from the small-� expansion of the form factors.

of the Wannier functions. The Wannier functions are con-
structed for the � valley bands, and the �� valley Wannier
functions are obtained using time reversal symmetry. The
valleys in the DFT calculations are decoupled by distinct
Bloch phases and opposite expectation values of the spin-�
operator.
Our approach to construct the Wannier functions is the

“projection”method [36], which is also the �rst step in con-
structing maximally localized Wannier functions [37, 38].
This approach �rst chooses several trial Wannier functions
and then projects the relevant Bloch states onto the trial
Wannier functions. The projected Bloch states are sub-
sequently orthogonalized. The Fourier transformation of
the orthogonalized projected Bloch states gives the desired
Wannier functions. This method generally retains the sym-
metry properties of the trialWannier functions [38] and is a
powerful tool to construct tight-binding models from DFT
calculations.
The DFT bands do not possess a local gap above which

the total Chern number is zero. Therefore, band disentan-
glement [39] needs to be performed to avoid Wannier ob-
struction [40]. A set of frozen states is chosen for which the

Ideal Landau levels has C = 1, and χ = 1
2π ∫ dk Trg(k) = 2n + 1



Quantum Geometry from Wannier Function

➤ Fitting to continuum model is a 
messy business (higher G 
coefficients are needed!). Instead we 
construct Wannier functions 
directly. 

➤ For twist angle , we have 
, 3.09, 5.11, 7.53.

θ = 2∘

χ = 1.04

2

FIG. 1. Bands for tMoTe2 at twist angles 1.89�, 2.00� and 2.14�.
Empty blue circles are from DFT calculations, and solid lines are
fromWannier interpolation. ForWannier interpolated bands, red
lines are from the � (spin up) valley and black lines are from the
�� (spin down) valley. AllWannier interpolated bands haveChern
number � = +1 for the � valley. Only Wannier interpolated
bands in the frozen window are shown here.

electron interactions.
To further explore the band topology of tMoTe2 around

this twist angle, we have performed DFT calculations at
two other twist angles 2.00� and 1.89�, following the same
method introduced in Ref. [33]. The moiré valence bands
from all three angles are shown in Fig. 1. Four consec-
utive � = 1 bands from � valley are found at twist an-
gles 2.00� and 1.89�. At twist angle 2.14�, the fourth band
is not well-isolated to have a well-de�ned Chern number.
The Chern numbers are determined by Wannier interpo-
lation with Wannier functions, whose construction will be
described below.
The consecutive Chern bands are �at, hinting at the pos-

sibility of strong-correlated physics when these bands are
partially �lled. In this work, we focus on the possibility
of realizing �rst LL physics in tMoTe2, speci�cally target-
ing the second valence band (bands are numbered in the
descending order of energy). At the twist angle 2.00�, the
second valence band reaches optimal �atness. Therefore,
we will focus on this twist angle in the following, deferring
the results from other twist angles to Supplemental Mate-
rial [35].
Quantum geometry from Wannier functions.—To inves-

tigate whether consecutive moiré valence bands resemble
LL series, accurate modelling is required to capture �uctu-
ations of the quantum geometry of the moiré minibands.
Currently, the most common description of moiré super-
lattice is continuum models, in which the e�ect of moiré
superlattice is described by moiré potentials periodic in the
moiré Bravais lattice vectors. However, continuum mod-
els �tted to DFT bands within the �rst few harmonic moiré
potentials do not guarantee an accurate reproduction of the
quantum geometry such as the Berry curvature � and the
Fubini-Study metric � from DFT wave functions. Here,
we constructWannier functions to faithfully represent DFT
wave functions and performmany-body calculations on top

FIG. 2. (a) Real space distributions of the Wannier functions for
tMoTe2 at twist angle 2.00�. Black parallelograms represent moiré
unit cell. The phases of the �3 eigenvalues with respect to the
center of theWannier functions have been labeled. Contributions
from both layers have been summed over. (b) and (c) show the
distribution of � and tr(�) in the Brillouin zone for the second
moiréminiband. Theunit for both� and tr(�) is 2�����, where ���
is the area of the Brillouin zone. Both � and tr(�) are calculated
from the small-� expansion of the form factors.

of the Wannier functions. The Wannier functions are con-
structed for the � valley bands, and the �� valley Wannier
functions are obtained using time reversal symmetry. The
valleys in the DFT calculations are decoupled by distinct
Bloch phases and opposite expectation values of the spin-�
operator.
Our approach to construct the Wannier functions is the

“projection”method [36], which is also the �rst step in con-
structing maximally localized Wannier functions [37, 38].
This approach �rst chooses several trial Wannier functions
and then projects the relevant Bloch states onto the trial
Wannier functions. The projected Bloch states are sub-
sequently orthogonalized. The Fourier transformation of
the orthogonalized projected Bloch states gives the desired
Wannier functions. This method generally retains the sym-
metry properties of the trialWannier functions [38] and is a
powerful tool to construct tight-binding models from DFT
calculations.
The DFT bands do not possess a local gap above which

the total Chern number is zero. Therefore, band disentan-
glement [39] needs to be performed to avoid Wannier ob-
struction [40]. A set of frozen states is chosen for which the

Wang et al. arXiv:2404.05697  

For a plane wave projection fitting, see Zhang et al, arXiv:2411.08108



Many-Body Spectrum for half-filled second Moire band

4

FIG. 4. Many-body spectrumof half-�lled secondmoiréminiband
(left) and half-�lled �rst LL (right) on a 4 ◊ 6 [(a)] and 5 ◊ 6 [(b)]
supercell with periodic boundary condition. The twist angle is
2.00� for tMoTe2. Parameters: � = 5, � = 300 Å.

The results of Hartree-Fock calculations are presented in
Fig. 3. Only frozen bands are included in the calculations.
An enhanced gap between the �rst and second moiré va-
lence bands can be observed. Crucially, after HF calcula-
tions, the �uctuations of � and tr(�) are signi�cantly re-
duced by approximately 50% (Table I), while � slightly de-
creases (3.09 to 3.02). The improvement of quantum geom-
etry enhances the analogy between the second moiré band
and the �rst LL.
Focusing on the half-�lled second moiré valence band,

we carry out ED calculations on top of the HF calculations.
To avoid double counting of the electron-electron interac-
tion, we again utilize Eq. (4) as the Hamiltonian in ED cal-
culations. In this context, ��� and �0 in Eq. (4) are band en-
ergies and one-body reduced density matrix from HF cal-
culations. Previously, the double counting removing pro-
cedure for HF calculations on top of DFT calculations is
heuristic. However, the same procedure, used for ED cal-
culations on top of HF calculations, is exact. The sole pur-
pose of HF calculations is to select relevant Bloch states as
single particle orbitals for ED calculations.
On a 4 ◊ 3 supercell with periodic boundary condition,

our ED calculations, restricted to the second moiré valence
bands from both valleys, show that fully valley polarized
state is the ground state with parameters speci�ed in the
caption of Fig. 4. Therefore, we further restrict the ED cal-
culations to the second moiré valence band from the � val-
ley. The many-body spectrums are shown in Fig. 4 for 4◊ 6
and 5◊6 supercells with periodic boundary condition. The

TABLE I. Many-body gaps (unit: meV) of non-Abelian state for
tMoTe2 and relevant band properties, including the integration of
the quantum metric (�), the standard deviation of the Berry cur-
vature (��) and the quantum metric [�tr(�)], the band width of
the second moiré miniband (�, unit: meV) at various twist an-
gles (�). NaN indicates that no evidence of non-Abelian states has
been found. The gap is identi�ed on a 4 ◊ 6 supercell and the pa-
rameters are the same as that speci�ed in the caption of Fig. 4.

Before HF After HF
� � �� �tr(�) � � �� �tr(�) � Gap

1.89� 3.07 0.88 0.79 1.80 3.04 0.72 0.59 3.90 NaN
2.00� 3.09 0.51 0.67 0.95 3.02 0.32 0.27 1.59 0.41
2.14� 3.15 0.99 1.08 2.30 3.06 0.28 0.27 1.74 0.11

six-fold and two-fold ground state degeneracy with even
and odd number of electrons is the hallmark of the non-
Abelian states of MR type or its particle hole conjugate. In
Fig. 4, we also show the many-body spectrum of half-�lled
�rst LL with Coulomb interaction �(�) = �2�2�0����. The
LL system is put on the same torus as the corresponding
tMoTe2 system. The number of magnetic �uxes piercing
the torus for the LL system is equal to the number of unit
cells in the tMoTe2 system. The striking similarity of the
many-body spectrum between tMoTe2 and the LL system
is another strong indication of the non-Abelian states.
In the Supplemental Material [35], we present themany-

body spectrum on a 4 ◊ 6 supercell of half-�lled second
moiré miniband, but with bare DFT bands. The spectrum
bears similarity to that of the half-�lled �rst LL, but lacks
the six-fold ground state degeneracy. Therefore, the im-
proved quantum geometry from HF calculations is crucial
for the non-Abelian states to appear.
We have also performed calculations for twist angles

1.89� and 2.14�. The quantum geometry before and after
HF calculations is presented in Table I. Evidence of non-
Abelian states is also found at twist angle 2.14�, but with a
smaller many-body gap. No non-Abelian states are found
at 1.89�, for which the �uctuations of � and tr(�) are not
signi�cantly suppressed by HF calculations.
In LL systems, the MR (Pfa�an) state and its particle-

hole (PH) conjugate anti-Pfa�an state are degenerate if
LL mixing e�ects were ignored; the LL mixing provides
a PH breaking e�ect and selects anti-Pfa�an over Pfaf-
�an [49]. Besides Pfa�an and anti-Pfa�an, an intrinsi-
cally PH symmetric topological order, PH-Pfa�an, was also
proposed [50, 51]. In our systems, the PH symmetry is ex-
plicitly broken by the dispersion and non-uniform quan-
tum geometries. We leave more detailed examination of
the precise nature of our ground state to the future work,
which can be addressed by wave function overlap and en-
tanglement spectrum analysis. Besides � = �5�2, we also
perform ED calculations at other �llings. Speci�cally, at
� = �13�5, the many-body spectrum for tMoTe2 also re-
sembles that of the �rst LL [35], for which the Read-Rezayi

4x6

5x6

Wang et al. arXiv:2404.05697. 
 
See also Reddy et al, arXiv:2403.00059; 
Ahn et al, arXiv:2403.19155; Xu et al, 
arXiv:2403.17003

Figure R1: Particle-cut entanglement spectrum for half-!lled tMoTe2 (left) and!rst
LL (right) on a 4ω 6 supercell. To calculate the spectrum, the system is broken into
two subsystems, with one of the subsystemhaving 3 particles. The number of levels
below the spectrum gap for both (a) and (b) is 1952.

interactions in MoTe2. Therefore, we are con!dent that our subsequent calcula-
tions are based on an accurate moiré atomic structure.

We have explicitly detailed our method of Van der Waals correction and cited Phys.
Rev. B 109, 205121 (2024) in the revised manuscript.

2. The authors propose the non-abelian topological order by demonstrating the
ground state degeneracy (GSD) from the exact diagonalization calculation. How-
ever, it is important to note that Abelian topological orders, like 331, can exhibit
similar features in theGSD. Therefore, the identi!cation of non-Abelian topological
order cannot be conclusively determined solely by examining the GSD. Additional
evidence is required to substantiate the claim of non-Abelian topological order in
this material.

We thank the referee for this insightful question. Our evidence for the existence
of the non-Abelian state extends beyond the ground-state degeneracy. In Fig. 4 of
the main text, the similarity between the exact diagonalization spectrum of tMoTe2
and the !rst Landau level is not limited to the ground state. The excited states also
exhibit a one-to-one correspondence, providing additional evidence supporting the
presence of the non-Abelian state.

In addition, we have also calculated particle-cut entanglement spectrum in Fig. R1.
Particle-cut entanglement spectrum is introduced in Physical Review Letters 106
100405 (2011) and is supposed to reveal the bulk excitations of the system. In
Fig. R1, we !nd a gap in the entanglement spectrum and the number of states be-
low the gap is the correct number of quasihole excitations. This is another strong
evidence that tMoTe2 with twist angle 2.0⋛ is in a Moore-Read-like non-Abelian
state.

3

Particle-cut entanglement spectrum



Are multiple LL-like bands bound to happen?

➤ The skyrmion model of MoTe2 indicates that in the strong coupling limit (when the 
local spin splitting is large) we can view electrons as moving in an effective 
magnetic field . If  is sufficiently uniform, then we should 
have multiple LL-like bands. [see Morales-Duran et al, PRL (2024); Reddy et al, PRL (2024)] 

➤ But does it bound to happen as twist angle changes?

B = Δ ⋅ (∂xΔ × ∂yΔ) B

H = Hlocal + Hlong range

: Effective mass, inter layer tunneling. Parameters here are  independent 

: Polarization charges, which can be computed from the lattice 
relaxation pattern, and its associated potential can be obtained by solving the 
Poisson equation. This term is strongly  dependent. Since it is long range, ML 
packages such as DeepH cannot accurately capture this part.

Hlocal θ

Hlong range

θ



Summary

➤ Machine-learning based approach provides a powerful tool to study moiré 
superlattices 

➤ The competition between stacking ferroelectricity and piezoelectricity 
determines the band topology 

➤ Strain could potentially be an effective tuning knob 

➤ Higher-level physics is possible around θ = 2∘
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