## **Moire Physics in Semiconductors**

Liang Fu

2023 Theory Winter School at MagLab



## Two-dimensional atomic crystals (2005)

K. S. Novoselov\*, D. Jiang\*, F. Schedin\*, T. J. Booth\*, V. V. Khotkevich\*, S. V. Morozov<sup>†</sup>, and A. K. Geim\*<sup>‡</sup>

#### Graphene

# Transition metal dichalcogenides MX<sub>2</sub>





## Big Family of 2D TMDs

$$MX_2: M = W, Mo, Nb, Ta$$
$$X = Te, Se, S$$

- semiconductors: WSe<sub>2</sub>
- superconductors: NbSe<sub>2</sub>
- charge density waves: TaS<sub>2</sub>
- topological insulators: WTe<sub>2</sub>

# M=W, Mo and X=Te, Se, S



- parabolic valence/conduction band
- spin-valley locking in  $\pm K$  valleys
- large effective mass  $\sim 0.5 1m_e$  (cf. TBG)

## 2DEG in Monolayer TMD





Shi et al, Nat. Nano. (2020)

## **Optical Response & Exciton Physics**



- exciton: large binding energy; small Bohr radius
- valley selection rule and Zeeman splitting

## **Exciton in Electron Liquid**

Monolayer MoSe<sub>2</sub> at B=0





#### Smolenski et al, Nature (2020)

## VdW Heterostructures: 1+1>>2



## **Moire Superlattices**





Li et al, Nat. Phys (2010)

Cao et al, Nature (2018)

## Semiconductor Moire Superlattices

twisted homobilayer

heterobilayer (twist not needed)



Moire period depends on lattice mismatch and twist angle:

$$a_M = \frac{a}{\sqrt{\theta^2 + \delta^2}}, \quad \delta = 1 - \frac{a'}{a}$$

## Moire Band in Heterobilayer



Spatial variation of band edge due to <u>lattice corrugation</u> generates slowly-varying periodic potential

$$H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) \qquad \qquad V(\mathbf{r}) = -2\mathbf{V}\sum_G \cos(\mathbf{G} \cdot \mathbf{r}_i + \boldsymbol{\phi})$$

Wu, Lovorn, Tutuc & MacDonald, PRL (2018)

## **Tunable Moire Bands**

Energy scales: kinetic energy  $E_K \sim \frac{\hbar^2}{ma_M^2}$  & moire potential V Length scales: confinement length  $\xi_0 \sim \left(\frac{\hbar^2 a_M^2}{mV}\right)^{\frac{1}{4}}$  & moire period  $a_M$ 



 $a_M$  controls the competition between the two scales.

## **Tunable Moire Bands**

Energy scales: kinetic energy  $E_K \sim \frac{\hbar^2}{m a_M^2}$  & moire potential V Length scales: confinement length  $\xi_0 \sim \left(\frac{\hbar^2 a_M^2}{mV}\right)^{\frac{1}{4}}$  & moire period  $a_M$ 



 $m = 0.5me, \ \phi \sim 0, \ V = \ 15 \ {
m meV}$  for MoSe2/WSe2

## **Tunable Moire Bands**

Twisted bilayer MoS<sub>2</sub>:  $\Gamma$  Valley, honeycomb moire lattice ( $\phi = 60^{\circ}$ )



Angeli & MacDonald, PNAS (2021)

Zhang, Liu & LF, PRB (2021)

Moire bandwidth decreases monotonously as  $\theta \rightarrow 0$ in contrast with twisted bilayer graphene

### **Tunable Artificial Solids**

$$H = \sum_{i} \left( \frac{p_i^2}{2m} - V(r_i) \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{\epsilon |r_i - r_j|}$$



- slowly-varying, long-wavelength moire potential
- electron filling tuned by electrostatic gating

# Plethora of Electron Phases

- Mott & Charge-transfer insulators
- Generalize Wigner crystal
- Continuous metal-insulator transition
- Quantum anomalous Hall insulator
- Heavy Fermi liquid
- Light-induced magnetism & exciton Mott insulator

and many proposals: superconductivity, quantum spin liquid, spin polaron, pseudogap metal ...

## Outline

- Moire bands at charge neutrality (n=0)
- Single-band Hubbard model: Mott insulators and local moments at n=1 electron crystals at n<1</li>
- Two-band Hubbard model: charge-transfer insulators at n=1 Mott insulator at n=2 electron pairing from repulsion quantum anomalous Hall state at n=1 (Friday)
- Beyond Hubbard model: new theory of moire quantum matter

# Outline

- Moire bands at charge neutrality (n=0)
- Single-band Hubbard model: Mott insulators and local moments at n=1 electron crystals at n<1</li>
- Two-band Hubbard model: charge-transfer insulators at n=1 Mott insulator at n=2 electron pairing from repulsion Quantum anomalous Hall state at n=1 (Friday)
- Beyond Hubbard model: new theory of moire quantum matter

## Hubbard Model Physics

At large  $a_M \gg \xi_0$ , doped charges are tightly bound to "moire sites" defined by superlattice potential minima, leading to a **periodic array of artificial atoms** that are weakly coupled by electron tunneling and interaction.

Effective Hubbard model\*:  $H = -t\sum c_i^+ c_j + U_{ij}n_in_j$ 

Hierarchy of energy scales:

Wu et al, PRL (2018)

$$U \sim \frac{e^2}{\epsilon \xi_0} \gg V \sim \frac{e^2}{\epsilon a_M} \gg t \sim \exp\left(-\frac{a_M}{\xi_0}\right)$$

\* its applicability regime will be examined later.

## **Mott Insulator**



Electron hopping is prohibited by strong on-site repulsion U

#### Antiferromagnetic Exchange Interaction



Tang et al, Nature (2020)

#### **Generalized Wigner Crystals**

•  $t \rightarrow 0$  limit: interacting classical charges on triangular lattice

 $n = \frac{1}{3}, \frac{2}{3}$ 

• Coulomb interactions produce *incompressible* electron crystals at commensurate fractional fillings.



Regan et al, Nature (2020)

#### **Generalized Wigner Crystals**



Xu et al, Nature (2020)

#### Stripe Wigner Crystals

Phase diagram of triangular lattice gas with  $V_1$ ,  $V_2$ ,  $V_3$ 



Cornell + MIT, Nature Materials (2021)

### **Imaging Electron Crystals**



Li et al, Nature (2021)

# Outline

- Moire bands at charge neutrality (n=0)
- Single-band Hubbard model: Mott insulators and local moments at n=1 electron crystals at n<1</li>
- Two-band Hubbard model: charge-transfer insulator at n=1 Mott insulator at n=2 electron pairing from repulsion quantum anomalous Hall state at n=1 (Friday)
- Beyond Hubbard model: new theory of moire quantum matter

### **Moire Potential Landscape**



Zhang, Yuan & LF, PRB (2020)

## Semiconductor Heterostructures

#### From large-scale DFT:

| System               | δ  | $\Delta E_g$ | $V_0$ | $\phi$       | $E_0^{\min}$ |
|----------------------|----|--------------|-------|--------------|--------------|
| $WSe_2/WS_2$         | 4% | 640          | 15    | $45^{\circ}$ | 1.2          |
| $WSe_2/MoS_2$        | 4% | 940          | 11    | $40^{\circ}$ | 1.2          |
| ${\rm MoSe_2/MoS_2}$ | 4% | 630          | 9     | $42^{\circ}$ | 1.3          |
| ${ m MoSe_2/WS_2}$   | 4% | 270          | 7     | $35^{\circ}$ | 1.3          |





Yang Zhang

Zhang, Yuan & LF, PRB (2020)

#### **Charge-Transfer Insulator**



- doped charges at n>1 occupy secondary minima to avoid U.
- insulating gap at n=1 set by  $\Delta$

Zhang, Yuan & LF, PRB (2020)

#### Charge Transfer at $1 < n \leq 2$



Xu et al, arXiv:2202.02055



honeycomb lattice Mott insulator

#### **Doping Charge Transfer Insulator**

Hubbard model with extended repulsion on honeycomb lattice with staggered potential



Slagle & LF, PRB (2020)

#### Strong Coupling Limit

 $t \rightarrow 0$  limit: interacting classical charges on the lattice



## Attraction by Repulsion!



<u>Classical</u> electrostatics effect





For  $\Delta < 3V_2$ , a charge-2e "trimer" has lower energy than two separate electrons!

Slagle & LF, PRB (2020)

#### **Charge Excitations**





- $E_d$ : energy of a dipole  $E_d = \Delta + 2V_1 - 6V_2 + \cdots$
- Phase diagram accounts for **all** V<sub>ij</sub>
- doped charges may exist as electron, polaron, or charge-2e trimer.

#### **Pair Density Waves**



densest packing of trimers for  $V_{n \leq 4}$ 

contrasts with electron crystals at  $\delta = 1/3$  and 1/4

Slagle & LF, PRB (2020)



STM image of charge configuration needed

#### **Trimer Enabled Superconductivity**



Pair density wave

**Resonant SC** 

 $E_t - 2E_1 = \Delta - 3V_2 \gg t$ 

Slagle & LF, PRB (2020)

Crepel & LF, Science Advances (2021)

# Outline

- Moire bands at charge neutrality (n=0)
- Single-band Hubbard model: Mott insulators and local moments at n=1 electron crystals at n<1</li>
- Two-band Hubbard model: charge-transfer insulators at n=1 Mott insulator at n=2 electron pairing from repulsion quantum anomalous Hall state at n=1 (Friday)
- Beyond Hubbard model: Reddy, Devakul & LF, arXiv:2301.0079 new theory of moire quantum matter

#### **Applicability Regime of Hubbard Model**

Hubbard models (with nonlocal interaction) are obtained by projection to the lowest moire band.



#### A New Length Scale

Moire atom = quantum dot:  $V(\mathbf{r}) \approx \frac{1}{2}kr^2$ , with  $k \sim V/a_M^2$ 



Size of electron molecule in classical limit (Wigner molecule)

$$\xi_c \equiv \left(\frac{e^2}{2\epsilon k}\right)^{1/3} \propto a_M^{2/3} \qquad \lambda \equiv \frac{e^2/\epsilon\xi_0}{\hbar\omega} = 2(\xi_c/\xi_0)^3$$

At large moire period, the hierarchy of length scales:

$$a_M > \xi_c > \xi_0$$

## Moire Atoms



#### strong coupling regime at large $a_M$



- Two-electron atom: GS deviates strongly from Slater determinant;  $E_2 - 2E_1 \equiv U < \frac{e^2}{\epsilon \xi_0}$
- Three-electron atom: low-high spin transition at B=0; crystal field stabilizes Wigner molecule.

#### From Moire Atoms to Moire Solids



#### **Moire Solids**

Effective Hilbert space changes strongly with filling



#### Strong Interaction in Semiconductor Moires

- Mott insulators and local moments at n=1
- electron crystals at n<1
- charge transfer between 1<n<=2 electron pairing from repulsion
- strong-coupling regime of moire quantum matter

#### Theory

Yang Zhang Noah Yuan Bi Zhen Hiroki Isobe Trithep Devakul Philip Crowley

Nisarga Paul Valentin Crepel Margarita Davydova Aidan Reddy

Kevin Slagle (Caltech) Junkai Dong (Cornell) Jie Wang (Flatiron)

#### Experiment

Kin Fai Mak & Jie Shan (Cornell) Feng Wang (Berkeley) Xiaodong Xu (UW Seattle) Ben Feldman (Stanford) Pablo Jarillo-Herrero





