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Last time: classification of topological 
insulators with symmetry
Ryu, Schnyder, Furusaki, Ludwig, New J. Phys. (2010)

no symmetry

Integer quantum Hall

fermions w/ 
time-reversal

2d and 3d topological insulators

(weak index not captured)

Classified by time-reversal and charge-conjugation symmetries



Review of crystal symmetry
32 crystallographic point groups

Solids

C1 C2 C3 C4 C6

C2v C3v C4v C6v

Cs C2h C3h C4h C6h

Ci S4 S6

D2 D3 D4 D6

D2d D3d

Contain rotations, mirror planes, 
and rotoinversions

Image: JP Goss http://newton.ex.ac.uk/research/
qsystems/people/goss/symmetry/Solids.html

14 Bravais lattices+ = 230 space groups



Topological crystalline insulator
Fu PRL 106, 106802 (2011)

Crystal symmetries can protect topological phase

Surface states are robust if crystal symmetry is preserved

C4 symmetry 
(x,y,z) → (-y,x,z)

Bulk insulator

Quadratic surface dispersion

Z2 Topological invariant



Teo, Fu, Kane PRB 045426 (2008)

In a mirror plane, each mirror eigenvalue 
sector can have Chern number

Theory: Hsieh, et al, Nat. Comm. (2012)

Observation in SnTe by Ando group: Tanaka, et al, Nat. Phys. (2012)

Z invariant

n+i
n-i

Mirror Chern insulator

Mirror symmetry: (x,y,z) → (-x,y,z)

Two invariant mirror planes: kx = 0 and kx = 𝞹



“Non-symmorphic symmetries”: 
screws and glides

Glide symmetry:

mirror followed by 1/2 lattice translation 


Ex: (x,y,z) → (x+½,y,-z)

•  Example:

•  This is the frieze group p11g

t

Image:	Ma,	et	al,	Sci.	Adv.	3,	e1602415	(2017)

Screw symmetry:

rotation followed by fractional 

lattice translation



“Hourglass fermion”
Wang, Alexandradinata, Cava, Bernevig Nature 532, 189 (2016)

T 2 = �1

g2x = �eikz

(kx=0,kz=π)(kx=0,kz=0)

Valence	band

Conduction	band

+i

-i

-1
-1
+1
+1+i

-i

Hourglass	fermion

Valence	band

Conduction	band

+i

-i

-1

+1
+1

+i

-i

Glide	spin	Hall
(kx=0,kz=π)(kx=0,kz=0)

-1

y-normal surface: preserves glide

Label bands by gx eigenvalue ±eikz/2

Two possible surface states along kx=0 or 𝞹

KHgSb

Observation in KHgSb

Ding group: Ma, et al, Sci. Adv. (2017)



Problem: how to find materials to realize topological phases??

Image: Gedik group

Spintronics

Topological phases can be used for technological applications

Quantum computing

Image: Scientific American

Ultra-fast switches
Image: Max Planck Institute



Challenges to finding topological materials

1. Piecewise approach to classification

?

If we don’t know all the topological phases, then how can we 
identify all topological materials?

Mirror, C4, C6, glide, time reversal, …. 

What about crystals with combinations of symmetries?



Challenges to finding topological materials

2. Emphasis on abstract topological invariant

Z, Z2, Z4, Z2 x Z4, …  

Z2

Z
Z4Z

What chemical compounds will yield a Zn topological invariant?!?!



Topological quantum chemistry can diagnose and 
predict topological materials

JC et al., ArXiv:1709.01935 (PRB 2018); BB, JC, et al., Nature 547, 298–305 (2017)

1. Identify atomic limit band structures with symmetry


2. Systematic search for topological bands


3. New topological materials

Key: topological bands are not deformable to an atomic limit



Space groups describe 3D crystals

Ex: P6mm, (#183)
C6z, mx, lattice translations

t3

t2 t1

Real space Brillouin zone



Within one space group, many ways to arrange atoms

1 atom/unit cell

(triangular)

2 atoms/unit cell

(honeycomb)

3 atoms/unit cell

(kagome)

All atoms are related by symmetry



Within one arrangement, many choices of orbitals

2 atoms/unit cells (or pz) orbitals px and py orbitals



Each arrangement/orbital determines symmetry 
representations in Brillouin zone

s (or pz) orbitals

px and py orbitals

Γ K M Γ
Γ1

Γ4

K3

M4

M1

Band structure graphene

Band structure bismuthene

Γ5

Γ6

K3

K1

K2

M1

M2

M3

M4

Γ K M Γ

Real space vs momentum space



Input real space symmetry

Brillouin zone symmetry

Γ1 Γ4 K3 M4M1

1. space group

2. atom positions

3. orbitals

Band representation: atomic 
limit and its symmetry
Zak PRL 1980, PRB 1981, 1982



Band representations can describe multiple orbitals 
in different positions

Γ1 Γ4 K3 M4M1Γ6Γ5 K3K3 M1 M2 M3 M4

Infinitely many!



Elementary band reps are the building blocks

Γ K M Γ

{Band 
representation

Elementary

Elementary

}
}

Identify elementary band reps from their real space symmetry

Zak PRL 1980, PRB 1981, 1982

JC, et al, PRB 2018

Γ1

Γ4

K3
M4

M1

Γ5

Γ6

K3

K1

K2

M1

M2
M3

M4

10,000 elementary band reps (with and without TR, SOC)



Compute symmetry labels for each elementary 
band representation

http://www.cryst.ehu.es/
Mois Aroyo Luis Elcoro
Univ. Basque CountryElcoro, …, JC, et al, J. Appl. Cryst. 50, 1457-1477 (2017)



Atom arrangement
Orbital

High-symmetry 
points}

Each column is elementary band representation



We can now identify topological bands

Topological bands are not a “sum” of elementary band representations

Smooth deformations cannot change symmetry labels

✓Γ1
K1
K2

M1

See also: Po, Vishwanath, Watanabe, Nature Comm. 8, 50 (2017), 

Shiozaki, Sato, Gomi, PRB 95, 235425 (2017)

JC et al., ArXiv:1709.01935 (PRB 2018), BB, JC, et al., Nature 547, 298–305 (2017)



Steps for (inefficient) materials search:

I will describe a more efficient search

1. compute band structure

2. compute symmetry irreps


3. compare to irreps on server

For every known chemical compound:

Other search algorithms: BB, JC, et al., Nature 547, 298–305



Michel and Zak believed elementary bands could not be gapped

“we present the topologically global concepts 
necessary for the proof” 



Ex: pz orbitals on honeycomb with SOC (Kane-Mele model)

⇵⇵⇵
⇵ ⇵ ⇵

⇵⇵⇵
⇵ ⇵ ⇵

⇵⇵⇵

4n+2 valence bands must be topological!

Disconnected elementary bands are topological

TR requires 4 sites per unit cell on honeycomb lattice

JC et al., ArXiv:1709.01935 (PRB 2018), BB, JC, et al., Nature 547, 298–305 (2017)

See also: Po, Watanabe, Zalatel, Vishwanath, Sci. Adv. 2(4), (2016)



Strategy for finding topological materials
1. enumerate elementary bands

2. determine whether bands can be gapped

✓
30
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1
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5 . (Interchanging �̄8 and �̄9 also results in a valid disconnected energy graph

as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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• Compatibility between points and lines

• One label per line segment

• Lines with same symmetry label gap
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
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3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)
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��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 2. Reciprocal lattice vectors and high symmetry points of the hexagonal lattice.

In Figure 1b we show pictorially the location of these Wycko↵ positions within the standard hexagonal lattice.
Before moving on to construct the elementary band representations induced from these Wycko↵ positions, we must

also establish a convention for the Brillouin zone. We take as our reciprocal lattice vectors

g1 = 2⇡

 p
3

3
x̂ + ŷ

!
(42)

g2 = 2⇡

 p
3

3
x̂ � ŷ

!
, (43)

which are shown in Fig 2. We will be primarily interested in the little group representations at three high symmetry
points in the Brillouin zone. The first is the � point, with coordinates (00). The little group G� is, as always, the
full point group C6v. Next, there are the three time-reversal invariant M points, which we denote M , M

0 and M
00.

These have coordinates ( 1
20), ( 1

2
1
2 ) and (0 1

2 ) respectively. For the remainder of this appendix we need only concern
ourselves with the first of these, and so we will refer to it unambiguously as “the” M point; the others are related to
it by C3z symmetry. It has little group GM , which is isomorphic to C2v and generated by C2z and C3zm11̄. Finally,
there are the K and K

0 points – the focus of most topological investigations in graphene. We will focus here primarily
on the K point which has coordinates ( 1

3
2
3 ); the K

0 point can be obtained by a ⇡/3 rotation). The little group GK is
isomorphic to C3v and is generated by C3z and C2zm11̄. The high symmetry points are shown in Fig 2.

B. Elementary band representations

We are now in a position to compute the elementary band representations induced from the maximal Wycko↵
positions in the honeycomb lattice. We will consider each Wycko↵ position in turn, starting with the 1a position.
To aid in this task, we reproduce character tables for the single and double-valued representations of C6v, C3v and
C2v in Tables IV, V and VI, respectively. We label site-symmetry group representations by their Wycko↵ position
label. We denote that a representation is a double-valued representations by an overbar. Finally, we label little group
representations by their k-point label. For symmorphic groups, such as SG 183, the little group, Gk, of each k point
is isomorphic to one of the site-symmetry groups. Because of this, we will indicate whether a given representation
refers to a site-symmetry or little group by the choice of symbol, however we will label the representations for all
isomorphic groups in the same order.

1. Wycko↵ position 1a

The stabilizer group of Wycko↵ position 1a is Gqa
1
⌘ C6v, whose irreps are shown in Table IV. The induction

procedure is quite simple: given an irrep ⇢ of C6v with character �⇢, the characters �
k
G in the induced representation

⇢ " G are given simply by

�
k
G(h) = �⇢(h) (44)
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which the remaining two can be obtained by this relabelling. They are
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and
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This matrices di↵er only in their K�⇤ and K�T blocks. As a consistency check, we verify that the sum of elements in
the row or column labelled by ⇢ is equal to d(⇢) from Table XIV; thus, the degree matrix D satisfies Dij = �ij

P
` Ai`.

We can now construct the Laplacian matrices L1 = D�A1 and L2 = D�A2 associated to these two graphs. To save
space we will not write these out explicitly. We find that the null space of L1 is spanned by the unique vector

 1 =
�

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�T

(96)

indicating that the graph described by the matrix A1 has a single connected component consisting of all the nodes in
the graph. On the other hand, we find that the null space of L2 is spanned by

 
1
2 =

�
1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

�T
(97)

 
2
2 =

�
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

�T
(98)
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2
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corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
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B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
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1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
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2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
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where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is
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the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb
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2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)
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the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
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Now we are ready to find some materials!

Real materials have many orbitals (although usually <3 relevant near Fermi level)
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New topological materials: Cu3ABX4 class

Cu2SbCuS4
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Type-II Dirac points in buckled honeycomb compounds

Bent honeycomb IrTe2, P-3m1 

Top view



Strained PbO2

Semi-metal; topological bands -3.5eV Uniaxial strain opens topological gap near EF
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Topological quantum chemistry can 
diagnose and predict topological materials

JC et al., PRB 97, 035139 (2018); BB, JC, et al., Nature 547, 298–305 (2017)

1. Identify atomic limit band structures with symmetry


2. Systematic search for topological bands


3. New topological materials

Key: topological bands are not deformable to an atomic limit
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