

NATIONAL HIGH MAGNETIC FIELD LABORATORY 2017 ANNUAL RESEARCH REPORT

Spin susceptibility of charge ordered YBa₂Cu₃O_y across the upper critical field Zhou, R., Hirata, M., Wu, T., Vinograd, I., Mayaffre, H., Krämer, S., <u>Julien, M.-H.</u> (LNCMI-EMFL Grenoble); Reyes, A.P., Kuhns, P.L. (NHMFL); Hardy, W.N., Liang, R., Bonn, D.A. (University of British Columbia, Vancouver)

Introduction

The upper critical field H_{c2} is a fundamental, and technologically important, property that measures the ability of a superconductor to withstand magnetic fields. Recently, there has been a controversy regarding H_{c2} values in high- T_c copper-oxides. The dispute has become particularly acute in the context of the competition between superconductivity and charge density wave (CDW) order in underdoped YBa₂Cu₃O_y. Since the issue has been tackled almost exclusively by macroscopic techniques so far, there is a clear need for local-probe measurements.

Experimental

We have used NMR to measure the field dependence (up to 45 T on the NHMFL hybrid magnet) of the spin susceptibility χ_{spin} at low temperature (*T*) in charge ordered YBa₂Cu₃O_y. More specifically, we have measured the total ¹⁷O Knight shift in four different crystals and have determined its spin part K_{spin} , proportional to χ_{spin} of the CuO₂ planes, by subtracting the orbital contribution, while the contribution from diamagnetic shielding was found to be negligible at the fields used. Even though in the cuprates, χ_{spin} is in general not related to $N(E_F)$ in a simple way, we expect the field dependence of χ_{spin} at low *T* to reflect the field-dependence of $N(E_F)$.

Results and Discussion

The central result of this study is the observation of an essentially linear increase in χ_{spin} up to a point in the range of 20 to 40 T, followed by a constant value. This saturation point agrees quantitatively with H_{c2} values claimed in [G. Grissonnanche *et al.*, Nat. Commun. 5, 3280 (2014)], showing a very large depression around p = 0.12 doping (**Fig.1**). Our data further show that a large pseudogap persist above H_{c2} in the zero-temperature limit and that χ_{spin} is insensitive to the onset of three-dimensional long-range charge-density-wave (CDW) order.

Conclusions

Our results [1] show that short-range CDW order (already present in zero field) reconstructs the Fermi surface and reduces H_{c2} in underdoped YBa₂Cu₃O_y. They also show that the pseudogap is a ground-state property, independent of the superconducting gap.

Acknowledgements

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida.

Work in Grenoble was supported by the French Agence Nationale de la Recherche (ANR) under reference AF-12-BS04-0012-01 (Superfield) and by the Laboratoire d'Excellence Laboratoire d'Alliances Nanosciences – Energies du Futur (LANEF) in Grenoble (ANR-10-LABX-51-01). Work in Vancouver was supported by the Canadian Institute for Advanced Research and the Natural Science and Engineering Research Council.

References

[1] Zhou, R., et al., PNAS, 114, 13148–13153 (2017).

Fig.1 Saturation field in Knight shift measurements (blue dots, this work) at T ~ 2 K, compared to H_{c2} values extrapolated to T = 0 from resistivity data [B. Ramshaw *et al.*, Phys. Rev. B 86, 174501 (2012)].